+0

# How do I solve this equation?

0
498
5
+122

$${ \sqrt{x-1}*(1-6x)-(1/ \sqrt{x-1}*2)*(x-3x^2) \over x-1}$$

Namodesto  Nov 5, 2015
edited by Namodesto  Nov 5, 2015

#4
+18715
+30

$$\dfrac{ \sqrt{x-1}\cdot(1-6x)- \frac{1}{2\sqrt{x-1}}\cdot (x-3x^2) } { x-1 }$$

$$\small{ \begin{array}{rcll} &=& \left[ \dfrac{ \sqrt{x-1}\cdot(1-6x)- \frac{1}{2\cdot \sqrt{x-1}}\cdot (x-3x^2) } { x-1 } \right] \cdot \dfrac{ 2\cdot \sqrt{x-1} } { 2\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ \sqrt{x-1}\cdot 2\cdot \sqrt{x-1}\cdot(1-6x)- \frac{2\cdot \sqrt{x-1}}{2\cdot \sqrt{x-1}}\cdot (x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot \left(\sqrt{x-1}\right)^2 \cdot(1-6x)-(x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot (x-1) \cdot(1-6x)- (x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot (x-1) \cdot(1-6x)- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot ( x-6x^2-1+6x )- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot ( 7x-6x^2-1 )- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 14x-12x^2-2 - x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 13x-9x^2-2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot (x-1)\cdot (x-1)^{\frac12} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot(x-1)^{\frac32} } \\\\ \end{array} }$$

heureka  Nov 5, 2015
edited by heureka  Nov 5, 2015
edited by heureka  Nov 5, 2015
Sort:

#1
+91045
+5

Hi Namodesto,

You cannot solve it because it is not an equation.

You can only simplify it

$${ \sqrt{x-1}*(1-6x)-(1/ \sqrt{x-1}*2)*(x-3x^2) \over x-1}\\ =\left[\sqrt{x-1}*(1-6x)-(\frac{2}{ \sqrt{x-1}})*(x-3x^2) \right]\div (x-1)\\ =\left[\frac{(x-1)(1-6x)-2 (x-3x^2)}{\sqrt{x-1}} \right]\div (x-1)\\ =\left[\frac{(x-1)(1-6x)-2 (x-3x^2)}{\sqrt{x-1}} \right]\times \frac{1}{ (x-1)}\\ =\left[\frac{(x-1)(1-6x)-2 (x-3x^2)}{\sqrt{x-1}} \right]\times \frac{1}{ (x-1)}\\ =\frac{x-6x^2-1+6x-2 x+6x^2}{\sqrt{x-1}*(x-1)} \\ =\frac{5x-1}{(x-1)^{3/2}} \\$$

Melody  Nov 5, 2015
#2
+122
+5

Hi Melody,

http://math.stackexchange.com/questions/467592/derivative-of-frac-x-cdot-left1-3x-right-sqrtx-1?rq=1

I have problem understanding the last step. The following problem above was taken from an example of this website. How did he get to the final answer being -9x^2 + 13x - 2 from what I've written above?

Namodesto  Nov 5, 2015
#3
+91045
+5

Hi again Namodesto,

A part of the problem is that you presented the question incorrectly.  1/(sqrt(x-1)*2) the bottom needed to be in brackets.

You did not hve brackets which meant your 2 was up the top when it should  have been down the bottom.

I have been called away.  I will be back in about a half hour.  sorry.

I got t there answer except I got -2 anstead of +2

I will look more in a while :))

Must run .

Ok I am back and I can see that Heureka is already preparing another answer for you.

That +2 on  the first answer on this web page that you have since inserted  :-

http://math.stackexchange.com/questions/467592/derivative-of-frac-x-cdot-left1-3x-right-sqrtx-1?rq=1

is a typo, the answer further down is -2   and it is the same as I got when I redid your expression with the 2 down the bottom instead of up the top.  :)

I'll leave it now untill we both see what Heureka is preparing for you :))

Melody  Nov 5, 2015
edited by Melody  Nov 5, 2015
edited by Melody  Nov 5, 2015
#4
+18715
+30

$$\dfrac{ \sqrt{x-1}\cdot(1-6x)- \frac{1}{2\sqrt{x-1}}\cdot (x-3x^2) } { x-1 }$$

$$\small{ \begin{array}{rcll} &=& \left[ \dfrac{ \sqrt{x-1}\cdot(1-6x)- \frac{1}{2\cdot \sqrt{x-1}}\cdot (x-3x^2) } { x-1 } \right] \cdot \dfrac{ 2\cdot \sqrt{x-1} } { 2\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ \sqrt{x-1}\cdot 2\cdot \sqrt{x-1}\cdot(1-6x)- \frac{2\cdot \sqrt{x-1}}{2\cdot \sqrt{x-1}}\cdot (x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot \left(\sqrt{x-1}\right)^2 \cdot(1-6x)-(x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot (x-1) \cdot(1-6x)- (x-3x^2) } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot (x-1) \cdot(1-6x)- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot ( x-6x^2-1+6x )- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 2\cdot ( 7x-6x^2-1 )- x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 14x-12x^2-2 - x + 3x^2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ 13x-9x^2-2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot (x-1)\cdot \sqrt{x-1} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot (x-1)\cdot (x-1)^{\frac12} } \\\\ &=& \dfrac{ -9x^2+13x-2 } { 2\cdot(x-1)^{\frac32} } \\\\ \end{array} }$$

heureka  Nov 5, 2015
edited by heureka  Nov 5, 2015
edited by heureka  Nov 5, 2015
#5
+122
+5

Thank you so much!

Namodesto  Nov 5, 2015

### 11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details