+0

# How to find integral of logarithmic functions

0
208
1

How to find integral of logarithmic functions

Guest Nov 19, 2014

#1
+18829
+5

How to find integral of logarithmic functions:

$$\boxed{\int{log_a(x) \ dx} = x * log_a(x) - \dfrac{x}{\ln{(a)}} + c\ }$$

$$\begin{array}{lcrclcrccccl} (u & * & v)' & = & u' &*& v & + & u &*& v' &\\ (x & * & log_a{(x)})' & = & 1 & *& log_a{(x)} & + & x & * & \dfrac{1}{x*\ln{(a)}} & \quad | \quad  { ( log_a{(x)} )' = \dfrac{1}{x*\ln{(a)}} }\\ \\ (x & * & log_a{(x)})' & = &&& log_a{(x)} & + &&& \dfrac{1}{\ln{(a)}} & \quad | \quad \int{}\ dx \\ \\ x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{1}{\ln{(a)}} \int{\ dx} & \\ \\ x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{x}{\ln{(a)}} & \\ \\ \int{ log_a{(x)} \ dx} & & & = &&& x * log_a{(x)} & - &&& \dfrac{x}{\ln{(a)}} & \end{array}$$

Example:

$$basic \ a = e: \\ \int{ log_e{(x)} \ dx} =x * log_e{(x)} - \dfrac{x}{\ln{(e)}} \\ \int{ \ln{(x)} \ dx} =x * ln{(x)} - \dfrac{x} {1} \\ \int{ \ln{(x)} \ dx} =x * ln{(x)} - x\\$$

$$basic \ a = 10: \\ \int{ log_{10}{(x)} \ dx} =x * log_{10}{(x)} - \dfrac{x}{\ln{(10)}} \\ \int{ \log{(x)} \ dx} =x * log{(x)} - \dfrac{x}{\ln{(10)}}$$

heureka  Nov 19, 2014
Sort:

#1
+18829
+5

How to find integral of logarithmic functions:

$$\boxed{\int{log_a(x) \ dx} = x * log_a(x) - \dfrac{x}{\ln{(a)}} + c\ }$$

$$\begin{array}{lcrclcrccccl} (u & * & v)' & = & u' &*& v & + & u &*& v' &\\ (x & * & log_a{(x)})' & = & 1 & *& log_a{(x)} & + & x & * & \dfrac{1}{x*\ln{(a)}} & \quad | \quad  { ( log_a{(x)} )' = \dfrac{1}{x*\ln{(a)}} }\\ \\ (x & * & log_a{(x)})' & = &&& log_a{(x)} & + &&& \dfrac{1}{\ln{(a)}} & \quad | \quad \int{}\ dx \\ \\ x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{1}{\ln{(a)}} \int{\ dx} & \\ \\ x & * & log_a{(x)} & = &&& \int{ log_a{(x)} \ dx} & + &&& \dfrac{x}{\ln{(a)}} & \\ \\ \int{ log_a{(x)} \ dx} & & & = &&& x * log_a{(x)} & - &&& \dfrac{x}{\ln{(a)}} & \end{array}$$

Example:

$$basic \ a = e: \\ \int{ log_e{(x)} \ dx} =x * log_e{(x)} - \dfrac{x}{\ln{(e)}} \\ \int{ \ln{(x)} \ dx} =x * ln{(x)} - \dfrac{x} {1} \\ \int{ \ln{(x)} \ dx} =x * ln{(x)} - x\\$$

$$basic \ a = 10: \\ \int{ log_{10}{(x)} \ dx} =x * log_{10}{(x)} - \dfrac{x}{\ln{(10)}} \\ \int{ \log{(x)} \ dx} =x * log{(x)} - \dfrac{x}{\ln{(10)}}$$

heureka  Nov 19, 2014

### 18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details