+0  
 
+7
759
1
avatar+1760 

In PQR, we have P=30°, Q=60°, R=90°, Point X is on PR such that QX bisects PQR. If PQ equals 12, then what is the area of PQX?

Mellie  Nov 12, 2015

Best Answer 

 #1
avatar+78553 
+10

 

PR = 12*sin60 = 12 * [sqrt(3)/2]  =  6 * sqrt(3)

 

And we can find XR thusly :

 

XR/ sin30  = 6/ sin60

 

XR   = 6sin30/ sin60

 

XR  = 6(1/2) / [sqrt(3) / 2]

 

XR  = 3*2/ sqrt(3) = 6/sqrt(3)

 

So PX  =  PR - XR =   6*sqrt(3) - 6/sqrt(3) =  [18 - 6] / sqrt(3)  =  12/sqrt(3)

 

And the area of PQX   =  (1/2) *PX* RQ  = (1/2) (12/sqrt(3)) * (6)   =  36 / sqrt(3)  square units

 

Here's a pic :  

 

 

cool cool cool

CPhill  Nov 12, 2015
edited by CPhill  Nov 12, 2015
edited by CPhill  Nov 13, 2015
Sort: 

1+0 Answers

 #1
avatar+78553 
+10
Best Answer

 

PR = 12*sin60 = 12 * [sqrt(3)/2]  =  6 * sqrt(3)

 

And we can find XR thusly :

 

XR/ sin30  = 6/ sin60

 

XR   = 6sin30/ sin60

 

XR  = 6(1/2) / [sqrt(3) / 2]

 

XR  = 3*2/ sqrt(3) = 6/sqrt(3)

 

So PX  =  PR - XR =   6*sqrt(3) - 6/sqrt(3) =  [18 - 6] / sqrt(3)  =  12/sqrt(3)

 

And the area of PQX   =  (1/2) *PX* RQ  = (1/2) (12/sqrt(3)) * (6)   =  36 / sqrt(3)  square units

 

Here's a pic :  

 

 

cool cool cool

CPhill  Nov 12, 2015
edited by CPhill  Nov 12, 2015
edited by CPhill  Nov 13, 2015

15 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details