+0

# Infinite sums

0
286
3

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

Guest Jan 13, 2016

#1
+18715
+15

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

$$\begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 1^2} && 2^2 && 3^2 && 4^2 && 5^2 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 3} && 5 && 7 && 9 && 11 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 2} && 2 && 2 && 2 && 2 && \cdots \\ \end{array}$$

$$\begin{array}{rcl} s_n &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } + \binom{n}{3}\cdot {\color{red}d_2 }\\ s_n &=& \binom{n}{1}\cdot {\color{red}1 } + \binom{n}{2}\cdot {\color{red}3} + \binom{n}{3}\cdot {\color{red}2}\\ \\ \hline \binom{n}{1} &=& n \\ \binom{n}{2} &=& ( \frac{n}{2} ) \cdot ( \frac{n-1}{1} ) \\ \binom{n}{3} &=& ( \frac{n}{3} ) \cdot ( \frac{n-1}{2} )\cdot ( \frac{n-2}{1} ) \\ \hline \\ s_n &=& (n)\cdot {\color{red}1} + ( \frac{n}{2} ) \cdot ( \frac{n-1}{1} )\cdot {\color{red}3} + ( \frac{n}{3} ) \cdot ( \frac{n-1}{2} )\cdot ( \frac{n-2}{1} )\cdot {\color{red}2} \quad | \quad \cdot 6\\ 6\cdot s_n &=& n\cdot 6 + n \cdot ( n-1 )\cdot 9 + n \cdot ( n-1 )\cdot ( n-2 )\cdot 2 \\ 6\cdot s_n &=& n \left[~ 6 + ( n-1 )\cdot 9 + ( n-1 )\cdot ( n-2 )\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left[~ 6 + 9n-9 + (n^2 - 3n + 2)\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left[~ -3 + 9n + (n^2 - 3n + 2)\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left(~ -3 + 9n + 2n^2 - 6n + 4 ~\right) \\ 6\cdot s_n &=& (n) \left(~ 1 + 3n + 2n^2 ~\right) \\ 6\cdot s_n &=& (n) \cdot (n+1) \cdot ( 2n + 1 ) \\\\ \mathbf{s_n} &=& \mathbf{ \frac{ (n) \cdot (n+1) \cdot ( 2n + 1 ) }{6} } \\\\ s_1 &=& 1 = \frac{ 1 \cdot ( 1+1) \cdot ( 2\cdot 1 + 1 ) }{6} = 1\\ s_2 &=& 1+4 = \frac{ 2 \cdot ( 2+1) \cdot ( 2\cdot 2 + 1 ) }{6} = 5\\ s_3 &=& 1+4+9 = \frac{ 3 \cdot ( 3+1) \cdot ( 2\cdot 3 + 1 ) }{6} = 14\\ s_4 &=& 1+4+9+16 = \frac{ 4 \cdot ( 4+1) \cdot ( 2\cdot 4 + 1 ) }{6} = 30\\ s_5 &=& 1+4+9+16+25 = \frac{ 5 \cdot ( 5+1) \cdot ( 2\cdot 5 + 1 ) }{6} = 55\\ \cdots \end{array}$$

heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
Sort:

#1
+18715
+15

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

$$\begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 1^2} && 2^2 && 3^2 && 4^2 && 5^2 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 3} && 5 && 7 && 9 && 11 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 2} && 2 && 2 && 2 && 2 && \cdots \\ \end{array}$$

$$\begin{array}{rcl} s_n &=& \binom{n}{1}\cdot {\color{red}d_0 } + \binom{n}{2}\cdot {\color{red}d_1 } + \binom{n}{3}\cdot {\color{red}d_2 }\\ s_n &=& \binom{n}{1}\cdot {\color{red}1 } + \binom{n}{2}\cdot {\color{red}3} + \binom{n}{3}\cdot {\color{red}2}\\ \\ \hline \binom{n}{1} &=& n \\ \binom{n}{2} &=& ( \frac{n}{2} ) \cdot ( \frac{n-1}{1} ) \\ \binom{n}{3} &=& ( \frac{n}{3} ) \cdot ( \frac{n-1}{2} )\cdot ( \frac{n-2}{1} ) \\ \hline \\ s_n &=& (n)\cdot {\color{red}1} + ( \frac{n}{2} ) \cdot ( \frac{n-1}{1} )\cdot {\color{red}3} + ( \frac{n}{3} ) \cdot ( \frac{n-1}{2} )\cdot ( \frac{n-2}{1} )\cdot {\color{red}2} \quad | \quad \cdot 6\\ 6\cdot s_n &=& n\cdot 6 + n \cdot ( n-1 )\cdot 9 + n \cdot ( n-1 )\cdot ( n-2 )\cdot 2 \\ 6\cdot s_n &=& n \left[~ 6 + ( n-1 )\cdot 9 + ( n-1 )\cdot ( n-2 )\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left[~ 6 + 9n-9 + (n^2 - 3n + 2)\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left[~ -3 + 9n + (n^2 - 3n + 2)\cdot 2 ~\right] \\ 6\cdot s_n &=& (n) \left(~ -3 + 9n + 2n^2 - 6n + 4 ~\right) \\ 6\cdot s_n &=& (n) \left(~ 1 + 3n + 2n^2 ~\right) \\ 6\cdot s_n &=& (n) \cdot (n+1) \cdot ( 2n + 1 ) \\\\ \mathbf{s_n} &=& \mathbf{ \frac{ (n) \cdot (n+1) \cdot ( 2n + 1 ) }{6} } \\\\ s_1 &=& 1 = \frac{ 1 \cdot ( 1+1) \cdot ( 2\cdot 1 + 1 ) }{6} = 1\\ s_2 &=& 1+4 = \frac{ 2 \cdot ( 2+1) \cdot ( 2\cdot 2 + 1 ) }{6} = 5\\ s_3 &=& 1+4+9 = \frac{ 3 \cdot ( 3+1) \cdot ( 2\cdot 3 + 1 ) }{6} = 14\\ s_4 &=& 1+4+9+16 = \frac{ 4 \cdot ( 4+1) \cdot ( 2\cdot 4 + 1 ) }{6} = 30\\ s_5 &=& 1+4+9+16+25 = \frac{ 5 \cdot ( 5+1) \cdot ( 2\cdot 5 + 1 ) }{6} = 55\\ \cdots \end{array}$$

heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
#2
+91053
+5

Thanks Heureka for this great answer.

I have just noticed that if I right click on your code I can bring it onto the screen in a resizable box.

I can also highlight it  so I assume I can copy it and paste it somewhere else.

This is fabulous!

Mr Massow has been on  the forum quite a bit recently.  I assume this is one of the improvemtns he has made. :)

Thanks Mr Massow!!    :D

Melody  Jan 13, 2016
#3
+91053
0

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

Hang on a moment.

If the number of terms is finite then Heureka's formula is great :/

But if the number of terms is not finite, which I think is implied by the dots, then lim as n approaches infinity is infinity

Melody  Jan 13, 2016

### 3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details