Processing math: 100%
 
+0  
 
0
1206
3
avatar

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

 Jan 13, 2016

Best Answer 

 #1
avatar+26396 
+15

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

 

 

d0=12223242521. Difference d1=3579112. Difference d2=22222

 

 

sn=(n1)d0+(n2)d1+(n3)d2sn=(n1)1+(n2)3+(n3)2(n1)=n(n2)=(n2)(n11)(n3)=(n3)(n12)(n21)sn=(n)1+(n2)(n11)3+(n3)(n12)(n21)2|66sn=n6+n(n1)9+n(n1)(n2)26sn=n[ 6+(n1)9+(n1)(n2)2 ]6sn=(n)[ 6+9n9+(n23n+2)2 ]6sn=(n)[ 3+9n+(n23n+2)2 ]6sn=(n)( 3+9n+2n26n+4 )6sn=(n)( 1+3n+2n2 )6sn=(n)(n+1)(2n+1)sn=(n)(n+1)(2n+1)6s1=1=1(1+1)(21+1)6=1s2=1+4=2(2+1)(22+1)6=5s3=1+4+9=3(3+1)(23+1)6=14s4=1+4+9+16=4(4+1)(24+1)6=30s5=1+4+9+16+25=5(5+1)(25+1)6=55

 

laugh

 Jan 13, 2016
edited by heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
 #1
avatar+26396 
+15
Best Answer

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

 

 

d0=12223242521. Difference d1=3579112. Difference d2=22222

 

 

sn=(n1)d0+(n2)d1+(n3)d2sn=(n1)1+(n2)3+(n3)2(n1)=n(n2)=(n2)(n11)(n3)=(n3)(n12)(n21)sn=(n)1+(n2)(n11)3+(n3)(n12)(n21)2|66sn=n6+n(n1)9+n(n1)(n2)26sn=n[ 6+(n1)9+(n1)(n2)2 ]6sn=(n)[ 6+9n9+(n23n+2)2 ]6sn=(n)[ 3+9n+(n23n+2)2 ]6sn=(n)( 3+9n+2n26n+4 )6sn=(n)( 1+3n+2n2 )6sn=(n)(n+1)(2n+1)sn=(n)(n+1)(2n+1)6s1=1=1(1+1)(21+1)6=1s2=1+4=2(2+1)(22+1)6=5s3=1+4+9=3(3+1)(23+1)6=14s4=1+4+9+16=4(4+1)(24+1)6=30s5=1+4+9+16+25=5(5+1)(25+1)6=55

 

laugh

heureka Jan 13, 2016
edited by heureka  Jan 13, 2016
edited by heureka  Jan 13, 2016
 #2
avatar+118696 
+5

Thanks Heureka for this great answer.

 

I have just noticed that if I right click on your code I can bring it onto the screen in a resizable box.

I can also highlight it  so I assume I can copy it and paste it somewhere else.

This is fabulous!

 

 

Mr Massow has been on  the forum quite a bit recently.  I assume this is one of the improvemtns he has made. :)

Thanks Mr Massow!!    :D

 Jan 13, 2016
 #3
avatar+118696 
0

What is this equal to? 1+4+9+16+25...

Don't say that it is infinity.

 

 

Hang on a moment.

 

If the number of terms is finite then Heureka's formula is great :/  

 

But if the number of terms is not finite, which I think is implied by the dots, then lim as n approaches infinity is infinity

 Jan 13, 2016

1 Online Users