+0

# integral problem

+5
372
7
+16

$$\int \frac{1}{\left(x^2+\frac{3}{4}\right)}dx$$$Somobody who know how to solve this?? Please :) blaster01 Dec 7, 2014 ### Best Answer #6 +81022 +10 I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge" ∫ x / √(3 - 4x^2) dx let u = 3 - 4x^2 du = -8x dx du/-8 = x dx So we have -(1/8)∫u^(-1/2) du = -(1/4)u^(1/2) + C = -(1/4)(3 - 4x^2)^(1/2) + C - CPhill Dec 8, 2014 Sort: ### 7+0 Answers #1 +26402 +10 . Alan Dec 7, 2014 #2 +91451 +5 (2/sqrt3)tan^(-1)(2x/sqrt3)+c $$\int\;\frac{1}{x^2+\frac{3}{4}}\;dx\;=\;\frac{2}{\sqrt3}\;tan^{-1}\;\frac{2x}{\sqrt3}+c$$ $$\int\;\frac{1}{x^2+a^2}\;dx\;=\;\frac{1}{a}\;tan^{-1}\;\frac{x}{a}+c$$ Melody Dec 7, 2014 #3 +16 0 thank you alan a lot, but i have one more problem with this: $$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)dx$$$

blaster01  Dec 7, 2014
#4
+91451
+10

Some careless errors have been fixed - Thanks very much Alan.

It is correct now.

I have been perfecting my trademark here.

If there is a R E A L L Y  L O N G  W A Y to do something I WILL FIND IT.

In my opinion CPhill's answer is the best one here.

It is really elegant.    Thanks Chris.

Heureka's answer is also much better than mine.    Thanks Heureka

$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)dx\\\\ =\int \left(\frac{x}{\sqrt{4*(\frac{3}{4}-x^2)}}\right)dx\\\\ =\int \frac{x}{2\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\ =\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\ =\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{\sqrt{3}}{2})^2-x^2}}\;dx\\\\$$

$$\\=\frac{1}{2}\;\int \frac{x}{\sqrt{a^2-x^2}}\;dx\qquad where \quad a=\frac{\sqrt3}{2}\\\\ =\frac{1}{2}\;\int\;vu' \;dx\qquad where \quad v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\$$

Now use integration by parts to solve.

$$\\v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\ v'=1\qquad u=sin^{-1}\;\frac{x}{a}\\\\ \;\int\; x*\frac{1}{\sqrt{a^2-x^2}}\;dx\\\\$$

$$\\=\frac{1}{2}(sin^{-1}\;\frac{x}{a}\;*\;x\;\;-\;\;\int\;sin^{-1}\;\frac{x}{a}\;*\;1\;dx)\\\\ =\frac{1}{2}\left(xsin^{-1}\;\frac{x}{a}\;\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;+\;xsin^{-1}\;\frac{x}{a}\;\;\right]\right)+c\\\\ =\frac{1}{2}\left(\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;\right]\right)+c\\\\ =\frac{-1}{2}\left(a\;\sqrt{1-\frac{x^2}{a^2}}\;\right)+c\\\\ =\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{1-\frac{4x^2}{3}}\;\right)+c\\\\ =\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{\frac{3-4x^2}{3}}\;\right)+c\\\\ =\frac{-1}{2}\left(\frac{1}{2}\;\sqrt{3-4x^2}\;\right)+c\\\\ =\;\frac{-\sqrt{3-4x^2}}{4}\;+c\\\\$$

Melody  Dec 8, 2014
#5
+18829
+10

$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)\ dx \quad \text { ?}$$\$

$$\small{ \text{  \begin{array}{rcl} &=&\int \left(\frac{ \big{x} }{\sqrt{3\left(1-\frac{4}{3}x^2\right)}} \right) \ dx \\ \\ &=&\frac{1 }{\sqrt{3}}\int \left(\frac{ \big{x} }{\sqrt{ 1- \left( \frac{ \big{x} }{ \sqrt \frac{3}{4} } \right)^2 } } \right) \ dx \end{array}  }} \\\\ \small\text{ we substitue:  \frac{x} {\sqrt{ \frac{3}{4} } } = \sin(u) \quad \Rightarrow \quad \frac{ \ dx} {\sqrt{ \frac{3}{4} } } = \cos(u) \ du }} \\\\ \small\text{ and set also:  x = ( \sqrt{ \frac{3}{4} } ) * \sin(u) \quad  and \quad \ dx = ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du }} \\\\ \small\text{  =\frac{1 }{\sqrt{3}}\int \left(\frac{ ( \big{ \sqrt{ \frac{3}{4} } ) * \sin(u) } }{\sqrt{ 1- \big{ \left( \sin(u) \right)^2 } } } \right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du }}$$

$$\\\\ \small\text{  =\frac{1 }{\sqrt{3}}\int \left( \frac{ ( \big{ \sqrt{ \frac{3}{4} } ) * \sin(u) } } { \big{\cos(u) } } \right) ( \sqrt{ \frac{3}{4} } ) * \cos(u) \ du }} \\\\ \small\text{  =\dfrac{\frac{3}{4} }{ \sqrt{3} }\int \left( \sin(u) \ du }} \\\\ \small\text{  =\frac{ \sqrt{3}}{4}\int \left( \sin(u) \ du }} \\\\ \small\text{  =\frac{ \sqrt{3}}{4}\int \left( \sin(u) \ du \quad | \quad \int\sin(u)\ du = -\cos(u) }} \\\\ \small\text{  =\frac{ \sqrt{3}}{4}(-\cos(u)) }} \\\\ \small\text{  =-\frac{ \sqrt{3}}{4}\cos(u) \quad | \quad cos(u) = \sqrt{1-\sin(u)^2 }= \sqrt{1-\frac{4}{3}x^2 }  }} \\\\ \small\text{  =-\frac{ \sqrt{3}}{4}\sqrt{1-\frac{4}{3}x^2 } } }} \\\\ \small\text{  =-\frac{1}{4}\sqrt{3-4x^2 } } }}$$

$$\boxed{\int \left(\frac{x}{\sqrt{3-4x^2}}\right)\ dx =-\frac{1}{4}\sqrt{3-4x^2 } \quad + c }$$

heureka  Dec 8, 2014
#6
+81022
+10

I did this one a little differently...there is a "fudge factor" involved, but it's only a slight "fudge"

∫ x / √(3 - 4x^2) dx

let u = 3 - 4x^2    du  = -8x dx    du/-8 = x dx

So we have

-(1/8)∫u^(-1/2) du =

-(1/4)u^(1/2) + C =

-(1/4)(3 - 4x^2)^(1/2) + C

-

CPhill  Dec 8, 2014
#7
+91451
0

Chris, I really like what you have done.  It is really neat and looks perfectly valid too me.

Heureka's answer is also much better than mine.   Thanks Heureka

Melody  Dec 9, 2014

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details