+0  
 
0
121
1
avatar+46 

How many terms are in the arithmetic sequence 5, 1, −3, …, −99?

Hint: an = a1 + d(n − 1), where a1 is the first term and d is the common difference

 

A.) 27

B.) 28

C.) 29

D.) 30

Redsox123  May 11, 2017
Sort: 

1+0 Answers

 #1
avatar+18379 
+1

How many terms are in the arithmetic sequence 5, 1, −3, …, −99?
Hint: an = a1 + d(n − 1), where a1 is the first term and d is the common difference

 

\(\begin{array}{|rcll|} \hline 5, 1, -3, \ldots, -99 \\ a_1 &=& 5 \\ a_2 &=& a_1 + d \\ d &=& a_2 - a_1 \\ d &=& 1-5 \\ d &=& -4 \\\\ a_n &=& a_1 + (n-1)\cdot d \quad & | \quad a_1 = 5 \quad a_n=-99 \quad d = -4 \\ -99 &=& 5 + (n-1)\cdot (-4) \quad & | \quad -5 \\ -104 &=& (n-1)\cdot (-4) \quad & | \quad : (-4) \\ \frac{-104}{-4} &=& n-1 \\ \frac{104}{4} &=& n-1 \\ 26 &=& n-1 \quad & | \quad +1 \\ 27 &=& n \\ \hline \end{array}\)

 

 

In the arithmetic sequence 5, 1, -3, …, -99 are 27 terms.

 

laugh

heureka  May 11, 2017

11 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details