Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
1183
3
avatar

If a and b are positive numbers and 100a=95b,

prove that:

(i)  a>b

(ii) 105a<100b

 Jan 10, 2016

Best Answer 

 #2
avatar+118696 
+15

If a and b are positive numbers and 100/a =95/b,

prove that:

(i)  a > b

 

100a=95b100b=95a95a=100ba=100b95a=95b95+5b95a=b+morea>b

   

 

 

i)  prove 105a<100b

 

100a=95b100a×1.05=95b×1.05105a=99.75b105a=100b0.25b105a=100babitso105a<100b

 Jan 10, 2016
 #1
avatar
0

If a and b are positive numbers and 100/a =95/b,

prove that:

(i)  a > b

(ii) 105/a <100/b

 Jan 10, 2016
 #2
avatar+118696 
+15
Best Answer

If a and b are positive numbers and 100/a =95/b,

prove that:

(i)  a > b

 

100a=95b100b=95a95a=100ba=100b95a=95b95+5b95a=b+morea>b

   

 

 

i)  prove 105a<100b

 

100a=95b100a×1.05=95b×1.05105a=99.75b105a=100b0.25b105a=100babitso105a<100b

Melody Jan 10, 2016
 #3
avatar+130466 
+15

If a and b are positive numbers and 100/a =95/b,

prove that:

(i)  a > b

(ii) 105/a <100/b

 

(i)  if 100/a = 95/b, this implies that 95a = 100b, which implies that a = (100/95)b......Then a must be greater than b since we have to multiply b by a quantity > 1 to get a

 

(ii)  105/a < 100/b..... Cross-multiplying........

 

105b < 100a........but, by definition, a =(100/95)b....so....

 

105b < 100(100/95)b  .......divide both sibes by 100 →

 

(105/100)b < (100/95)b ........reduce the fractions →

 

(21/20)b < (20/19)b ........divide both sides by b  →

 

(21/20) < (20/19)  →    cross-multiply, again

 

19*21 < 20*20  →

 

399 < 400......and since the left side is less than the right side......then the left side of the original inequality is also less than the right

 

 

cool cool cool

 Jan 10, 2016

1 Online Users