+0  
 
+5
501
2
avatar

if lnx=1/x, then what is ln1/x=?

Guest Dec 9, 2015

Best Answer 

 #1
avatar+18714 
+15

if lnx=1/x, then what is ln1/x=?

 

\(\begin{array}{rcll} \ln{(x)} =\frac{1}{x} \qquad \ln{( \frac{1}{x} )} = \ ? \end{array}\)

 

\( \begin{array}{rcll} \ln{( \frac{1}{x} )} &=& \ln{( 1 )} -\ln{( x )} \qquad & | \qquad \ln{( 1 )} = 0\\ &=& 0 -\ln{( x )} \\ &=& -\ln{( x )} \qquad & | \qquad \ln{(x)} =\frac{1}{x}\\ &=& -\frac{1}{x} \\ \mathbf{ \ln{( \frac{1}{x} )} } & \mathbf{=} & \mathbf{ -\frac{1}{x} } \end{array}\)

 

 

excursus

\(\begin{array}{rcll} \ln{(x)} = \frac{1}{x} \qquad x = \ ? \end{array}\)

 

\(\begin{array}{rcll} \ln{(x)} &=& \frac{1}{x} \\ \ln{(x^x)} &=& 1 \qquad & | \qquad e^{()} \\ \mathbf{x^x} &\mathbf{=}& \mathbf{e} \\\\ e^{\ln{(x^x)}}&=& e \qquad \ln{(x^x)} = 1\\ e^{ x\cdot \ln{(x)} } &=& e\\ x\cdot \ln{(x)} &=& 1 \qquad z = \ln{(x)} \\ x\cdot z &=& 1 \qquad e^z = x \\ e^z\cdot z &=& 1 \\\\ z &=& W(1) \\ e^{\ln{(x)}} &=& e^{W(1)}\\ x &=& e^{W(1)} \qquad \text{or}\\\\ x\cdot z &=& 1 \\ x &=& \frac{1}{z} \qquad z = W(1) \\ x &=& \frac{1}{W(1)}\\\\ \end{array}\\ \small{ W(1) = 0.5671432904097838729999686622103555497538157871865125081351310792230457930866\dots\\ x = \frac{1}{W(1)} = 1.7632228343518967102252017769517070804360179866674736\dots\\\\ W(1) = 0.5671432904\dots \text{ is called the omega constant }\\ \text{where } W(x) \text{ is the Lambert W-function } }\)

 

laugh

heureka  Dec 9, 2015
Sort: 

2+0 Answers

 #1
avatar+18714 
+15
Best Answer

if lnx=1/x, then what is ln1/x=?

 

\(\begin{array}{rcll} \ln{(x)} =\frac{1}{x} \qquad \ln{( \frac{1}{x} )} = \ ? \end{array}\)

 

\( \begin{array}{rcll} \ln{( \frac{1}{x} )} &=& \ln{( 1 )} -\ln{( x )} \qquad & | \qquad \ln{( 1 )} = 0\\ &=& 0 -\ln{( x )} \\ &=& -\ln{( x )} \qquad & | \qquad \ln{(x)} =\frac{1}{x}\\ &=& -\frac{1}{x} \\ \mathbf{ \ln{( \frac{1}{x} )} } & \mathbf{=} & \mathbf{ -\frac{1}{x} } \end{array}\)

 

 

excursus

\(\begin{array}{rcll} \ln{(x)} = \frac{1}{x} \qquad x = \ ? \end{array}\)

 

\(\begin{array}{rcll} \ln{(x)} &=& \frac{1}{x} \\ \ln{(x^x)} &=& 1 \qquad & | \qquad e^{()} \\ \mathbf{x^x} &\mathbf{=}& \mathbf{e} \\\\ e^{\ln{(x^x)}}&=& e \qquad \ln{(x^x)} = 1\\ e^{ x\cdot \ln{(x)} } &=& e\\ x\cdot \ln{(x)} &=& 1 \qquad z = \ln{(x)} \\ x\cdot z &=& 1 \qquad e^z = x \\ e^z\cdot z &=& 1 \\\\ z &=& W(1) \\ e^{\ln{(x)}} &=& e^{W(1)}\\ x &=& e^{W(1)} \qquad \text{or}\\\\ x\cdot z &=& 1 \\ x &=& \frac{1}{z} \qquad z = W(1) \\ x &=& \frac{1}{W(1)}\\\\ \end{array}\\ \small{ W(1) = 0.5671432904097838729999686622103555497538157871865125081351310792230457930866\dots\\ x = \frac{1}{W(1)} = 1.7632228343518967102252017769517070804360179866674736\dots\\\\ W(1) = 0.5671432904\dots \text{ is called the omega constant }\\ \text{where } W(x) \text{ is the Lambert W-function } }\)

 

laugh

heureka  Dec 9, 2015
 #2
avatar+91038 
+5

Thanks Heureka,

 

That excursion was really convoluted.

 

Intriguing - but convoluted.    laughindecisionlaugh

Melody  Dec 9, 2015

15 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details