+0  
 
+5
270
2
avatar+41 


 

X=?

Y=?

danielr_ddrp  Feb 8, 2016

Best Answer 

 #1
avatar+91051 
+10

Hi   Danielr_ddrp     

Welcome to the web2.0calc forum       laugh

 

\(log_2(x+4)-\frac{1}{2}(log_2y)=2\\ log_2(x+4)-log_2(y)^{1/2}=2\\ log_2\frac{x+4}{(y)^{1/2}}=log_24\\ \frac{x+4}{(y)^{1/2}}=4\\ x+4=4(y)^{1/2}\\ x^2+8x+16=16y\\ 16y=x^2+8x+16\)

 

 

\(2log_2x-log_2(y-1)=1\\ log_2x^2-log_2(y-1)=log_22\\ log_2\frac{x^2}{y-1}=log_22\\ \frac{x^2}{y-1}=2\\ x^2=2(y-1)\\ x^2=2y-2\\ x^2+2=2y\\ 8(x^2+2)=8*2y\\ 16y=8x^2+16\\\)

 

SO

 

\(x^2+8x+16=8x^2+16\\ x^2+8x=8x^2\\ 7x^2-8x=0\\ x(7x-8)=0\\ x=0 \;\;or\;\; x=\frac{8}{7}\\ \)

 

Log 0 is undefined so x=0 is a nonsense answer.

 

\(If\;\;x=\frac{8}{7}\;\;\;then\\ 16y=8*\frac{64}{49}+16\\ y=\frac{81}{49}\;\;\;(or\;\;\;1\frac{32}{49})\\ so\;\;x=\frac{8}{7}\;\;\;and\;\; y=\frac{81}{49} \)

 

I have checked this answer by substituting the values into the original equation.

It is correct :)

Melody  Feb 8, 2016
Sort: 

2+0 Answers

 #1
avatar+91051 
+10
Best Answer

Hi   Danielr_ddrp     

Welcome to the web2.0calc forum       laugh

 

\(log_2(x+4)-\frac{1}{2}(log_2y)=2\\ log_2(x+4)-log_2(y)^{1/2}=2\\ log_2\frac{x+4}{(y)^{1/2}}=log_24\\ \frac{x+4}{(y)^{1/2}}=4\\ x+4=4(y)^{1/2}\\ x^2+8x+16=16y\\ 16y=x^2+8x+16\)

 

 

\(2log_2x-log_2(y-1)=1\\ log_2x^2-log_2(y-1)=log_22\\ log_2\frac{x^2}{y-1}=log_22\\ \frac{x^2}{y-1}=2\\ x^2=2(y-1)\\ x^2=2y-2\\ x^2+2=2y\\ 8(x^2+2)=8*2y\\ 16y=8x^2+16\\\)

 

SO

 

\(x^2+8x+16=8x^2+16\\ x^2+8x=8x^2\\ 7x^2-8x=0\\ x(7x-8)=0\\ x=0 \;\;or\;\; x=\frac{8}{7}\\ \)

 

Log 0 is undefined so x=0 is a nonsense answer.

 

\(If\;\;x=\frac{8}{7}\;\;\;then\\ 16y=8*\frac{64}{49}+16\\ y=\frac{81}{49}\;\;\;(or\;\;\;1\frac{32}{49})\\ so\;\;x=\frac{8}{7}\;\;\;and\;\; y=\frac{81}{49} \)

 

I have checked this answer by substituting the values into the original equation.

It is correct :)

Melody  Feb 8, 2016
 #2
avatar
0

Hello smiley

Guest Feb 8, 2016

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details