+0

# Math

0
366
2

Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to find the exact value of the indicated trigonometric function. sin \theta=-(\sqrt(5))/(5),(3\pi)/(2)< \theta < 2\pi Find sin (\theta)/(2).

Guest Sep 17, 2016

#1
+91435
+10

Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to find the exact value of the indicated trigonometric function. sin \theta=-(\sqrt(5))/(5),(3\pi)/(2)< \theta < 2\pi Find sin (\theta)/(2).

$$0 ≤ θ ≤ 2π\\ sin \theta=-\frac{\sqrt5}{5},\qquad \frac{3\pi}{2}< \theta < 2\pi \qquad Find \;\;\frac{sin \theta}{2}\\$$

Ihis is what you have asked....

Is this your intended question?  - I guess not  :(

I guess underneath here  is what you really meant...

$$0 ≤ θ ≤ 2π\\ sin \theta=-\frac{\sqrt5}{5},\qquad \frac{3\pi}{2}< \theta < 2\pi \qquad Find \;\;sin\frac{ \theta}{2}\\ sin(2*\frac{\theta}{2})=2sin\frac{\theta}{2}cos\frac{\theta}{2}\\ sin^2(\theta)=4sin^2\frac{\theta}{2}cos^2\frac{\theta}{2}\\ sin^2(\theta)=4sin^2\frac{\theta}{2}(1-sin^2\frac{\theta}{2})\\ \frac{5}{25}=4sin^2\frac{\theta}{2}-4sin^4\frac{\theta}{2}\\ \frac{1}{5}=4sin^2\frac{\theta}{2}-4sin^4\frac{\theta}{2}\\ 1=20sin^2\frac{\theta}{2}-20sin^4\frac{\theta}{2}\\ 20sin^4\frac{\theta}{2}-20sin^2\frac{\theta}{2}+1=0\\ let\;\;y=sin^2\frac{\theta}{2}\\ 20y^2-20y+1=0\\ y=\frac{20\pm \sqrt{400-80}}{40}\\ y=\frac{20\pm \sqrt{320}}{40}\\ y=\frac{5\pm 2\sqrt{5}}{10}\\$$

$$\text{y must be positive so}\\ y=\frac{5+\sqrt5}{10}\\ sin^2{\frac{\theta}{2}}=\frac{5+\sqrt5}{10}\\ sin{\frac{\theta}{2}}=\sqrt{\frac{5+\sqrt5}{10}}\\~\\ \text{I should have mentioned earlier but since }\theta \text{ is in the 4th quadrant,}\\ \frac{\theta}{2}\;\text{is int the second quadrant so }sin\frac{\theta}{2}>0$$

Assuming that I did not make any silly mistakes (big assumption here)

$$sin{\frac{\theta}{2}}=\sqrt{\frac{5+\sqrt5}{10}}\\~\\$$

Melody  Sep 17, 2016
Sort:

#1
+91435
+10

Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to find the exact value of the indicated trigonometric function. sin \theta=-(\sqrt(5))/(5),(3\pi)/(2)< \theta < 2\pi Find sin (\theta)/(2).

$$0 ≤ θ ≤ 2π\\ sin \theta=-\frac{\sqrt5}{5},\qquad \frac{3\pi}{2}< \theta < 2\pi \qquad Find \;\;\frac{sin \theta}{2}\\$$

Ihis is what you have asked....

Is this your intended question?  - I guess not  :(

I guess underneath here  is what you really meant...

$$0 ≤ θ ≤ 2π\\ sin \theta=-\frac{\sqrt5}{5},\qquad \frac{3\pi}{2}< \theta < 2\pi \qquad Find \;\;sin\frac{ \theta}{2}\\ sin(2*\frac{\theta}{2})=2sin\frac{\theta}{2}cos\frac{\theta}{2}\\ sin^2(\theta)=4sin^2\frac{\theta}{2}cos^2\frac{\theta}{2}\\ sin^2(\theta)=4sin^2\frac{\theta}{2}(1-sin^2\frac{\theta}{2})\\ \frac{5}{25}=4sin^2\frac{\theta}{2}-4sin^4\frac{\theta}{2}\\ \frac{1}{5}=4sin^2\frac{\theta}{2}-4sin^4\frac{\theta}{2}\\ 1=20sin^2\frac{\theta}{2}-20sin^4\frac{\theta}{2}\\ 20sin^4\frac{\theta}{2}-20sin^2\frac{\theta}{2}+1=0\\ let\;\;y=sin^2\frac{\theta}{2}\\ 20y^2-20y+1=0\\ y=\frac{20\pm \sqrt{400-80}}{40}\\ y=\frac{20\pm \sqrt{320}}{40}\\ y=\frac{5\pm 2\sqrt{5}}{10}\\$$

$$\text{y must be positive so}\\ y=\frac{5+\sqrt5}{10}\\ sin^2{\frac{\theta}{2}}=\frac{5+\sqrt5}{10}\\ sin{\frac{\theta}{2}}=\sqrt{\frac{5+\sqrt5}{10}}\\~\\ \text{I should have mentioned earlier but since }\theta \text{ is in the 4th quadrant,}\\ \frac{\theta}{2}\;\text{is int the second quadrant so }sin\frac{\theta}{2}>0$$

Assuming that I did not make any silly mistakes (big assumption here)

$$sin{\frac{\theta}{2}}=\sqrt{\frac{5+\sqrt5}{10}}\\~\\$$

Melody  Sep 17, 2016
#2
0

Just the two silly mistakes Melody.

Guest Sep 26, 2016

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details