+0  
 
0
1117
4
avatar+1766 

My basketball team has eight games next month. We're pretty good; we have a 2/3 chance to win in each game. What is the probability we have a winning streak of at least four games at some point during the month?

Mellie  May 15, 2015

Best Answer 

 #3
avatar+91404 
+11

 

1 2 3 4 5 6 7 8  FOUR IN A ROW
W W W L            $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$
      L W W W W
L W W W W L           $${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$
  L W W W W L  
    L W W W W L

 

 

1 2 3 4 5 6 7 8                          FIVE IN A ROW
W W W W  L          $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$
     L W W W W W
L W W W W W  L       $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$      
  L W W W W W  L

 

 

1 2 3 4 5 6 7 8                       SIX IN A ROW
W W W W  W  L        $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$
   L  W W W W W W
L W W W W W  W  L     $${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

1 2 3 4 5 6 7 8    SEVEN IN A ROW
W W W W W W W L  
L W W W W W W W  

 

 

I TRIED TO PUT ALL THIS INTO A TABLE BUT THE TABLE DID NOT COPE VERY WELL   

 

FOUR IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$

 

$${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$

 

FIVE IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$

 

SIX IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

SEVEN IN A ROW  

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{7}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

EIGHT IN A ROW

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{8}}} = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

 

$${\frac{{\mathtt{32}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{16}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{729}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\frac{{\mathtt{112}}}{{\mathtt{243}}}} = {\mathtt{0.460\: \!905\: \!349\: \!794\: \!238\: \!7}}$$

Melody  May 17, 2015
Sort: 

4+0 Answers

 #1
avatar+80774 
+4

 

Probabilty of a winning streak of 4 = (2/3)^4  = 16/81

Probabilty of a winning streak of 5 = (2/3)^5  = 32/243

Probabilty of a winning streak of 6 = (2/3)^6  = 64/729

Probabilty of a winning streak of 7 = (2/3)^7  = 128/2187

Probabilty of a winning streak of 8 = (2/3)^8  = 256/6561

 

So the total probability of winning four or more in a row is

16 / 81 + 32 / 243 + 64 / 729 + 128 / 2187 + 256 / 6561   = 3376 / 6561  = about 51.46%

 

 

CPhill  May 15, 2015
 #2
avatar+91404 
+6

I am sure it is not that simple Chris  

Melody  May 17, 2015
 #3
avatar+91404 
+11
Best Answer

 

1 2 3 4 5 6 7 8  FOUR IN A ROW
W W W L            $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$
      L W W W W
L W W W W L           $${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$
  L W W W W L  
    L W W W W L

 

 

1 2 3 4 5 6 7 8                          FIVE IN A ROW
W W W W  L          $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$
     L W W W W W
L W W W W W  L       $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$      
  L W W W W W  L

 

 

1 2 3 4 5 6 7 8                       SIX IN A ROW
W W W W  W  L        $${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$
   L  W W W W W W
L W W W W W  W  L     $${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

1 2 3 4 5 6 7 8    SEVEN IN A ROW
W W W W W W W L  
L W W W W W W W  

 

 

I TRIED TO PUT ALL THIS INTO A TABLE BUT THE TABLE DID NOT COPE VERY WELL   

 

FOUR IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{32}}}{{\mathtt{243}}}} = {\mathtt{0.131\: \!687\: \!242\: \!798\: \!353\: \!9}}$$

 

$${\mathtt{3}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{4}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{243}}}} = {\mathtt{0.065\: \!843\: \!621\: \!399\: \!177}}$$

 

FIVE IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{64}}}{{\mathtt{729}}}} = {\mathtt{0.087\: \!791\: \!495\: \!198\: \!902\: \!6}}$$

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{5}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}} = {\mathtt{0.029\: \!263\: \!831\: \!732\: \!967\: \!5}}$$

 

SIX IN A ROW

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}} = {\mathtt{0.058\: \!527\: \!663\: \!465\: \!935\: \!1}}$$

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{6}}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}^{{\mathtt{2}}} = {\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}} = {\mathtt{0.009\: \!754\: \!610\: \!577\: \!655\: \!8}}$$

 

SEVEN IN A ROW  

 

$${\mathtt{2}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{7}}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right) = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

EIGHT IN A ROW

 

$${\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}^{{\mathtt{8}}} = {\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\mathtt{0.039\: \!018\: \!442\: \!310\: \!623\: \!4}}$$

 

 

$${\frac{{\mathtt{32}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{16}}}{{\mathtt{243}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{729}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{128}}}{{\mathtt{2\,187}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{64}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{256}}}{{\mathtt{6\,561}}}} = {\frac{{\mathtt{112}}}{{\mathtt{243}}}} = {\mathtt{0.460\: \!905\: \!349\: \!794\: \!238\: \!7}}$$

Melody  May 17, 2015
 #4
avatar+1766 
+1

Thank you both, but Melody's answer was correct. Thanks guys so so much once again!!

Mellie  May 17, 2015

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details