+0

# Need help with differentiation, It's simple.

0
113
4

Not for me though.

f(x) = (3x-6)/x

Guest Jul 25, 2017

#1
+18607
+2

f(x) = (3x-6)/x

$$\begin{array}{|rcll|} \hline f(x) &=& (3x-6)/x \\ f(x) &=& (3x-6)\cdot x^{-1} \\ f'(x) &=& (3x-6)\cdot (-1)\cdot x^{-2} + 3 \cdot x^{-1} \\ f'(x) &=& \frac{6-3x}{x^2} + \frac{3}{x} \cdot \frac{x}{x} \\ f'(x) &=& \frac{6-3x+3x}{x^2} \\ f'(x) &=& \frac{6}{x^2} \\ \hline \end{array}$$

heureka  Jul 25, 2017
Sort:

#1
+18607
+2

f(x) = (3x-6)/x

$$\begin{array}{|rcll|} \hline f(x) &=& (3x-6)/x \\ f(x) &=& (3x-6)\cdot x^{-1} \\ f'(x) &=& (3x-6)\cdot (-1)\cdot x^{-2} + 3 \cdot x^{-1} \\ f'(x) &=& \frac{6-3x}{x^2} + \frac{3}{x} \cdot \frac{x}{x} \\ f'(x) &=& \frac{6-3x+3x}{x^2} \\ f'(x) &=& \frac{6}{x^2} \\ \hline \end{array}$$

heureka  Jul 25, 2017
#2
+1

What happened in step 3?

"+ 3 * x-1

Im confused

I actually just multiply it out to be: 3xx-1 - 6x-1 = 3 - 6x-1

Differentiation to get 0 + 6/x2 = 6/x2

Guest Jul 25, 2017
#4
+90540
0

thanks Heureka,

$$\begin{array}{|rcll|} \hline f(x) &=& (3x-6)/x \\ f(x) &=& (3x-6)\cdot x^{-1} \\ &&\text{Heurka has used the product rule}\\ &&u=3x-6, \quad v=x^{-1}\\ &&u'=3, \quad v'=-1x^{-2}\\ && f'(x)=uv'+u'v \\~ \\f'(x) &=& (3x-6)\cdot (-1)\cdot x^{-2} + 3 \cdot x^{-1} \\ f'(x) &=& -(3x-6)x^{-2} \;\;+\;\; 3 x^{-1} \\ f'(x) &=& (6-3x)x^{-2} \;\;+\;\; 3 x^{-1} \\ f'(x) &=& \frac{(6-3x)}{x^{2}} \;\;+\;\; \frac{3}{ x} \\ f'(x) &=& \frac{6-3x}{x^2} \;\;+ \;\;\frac{3}{x} \cdot \frac{x}{x} \\ f'(x) &=& \frac{6-3x}{x^2} \;\;+ \;\;\frac{3x}{x^2} \\ f'(x) &=& \frac{6-3x+3x}{x^2} \\ f'(x) &=& \frac{6}{x^2} \\ \hline \end{array}$$

Melody  Jul 25, 2017
#3
+90540
+1

f(x) = (3x-6)/x

You could also use the quotient rule:

$$f(x) = \frac{(3x-6)}{x}\\ f'(x) = \frac{(x*3)-1(3x-6)}{x^2}\\ f'(x) = \frac{3x-3x+6}{x^2}\\ f'(x) = \frac{6}{x^2}\\$$

Melody  Jul 25, 2017
edited by Melody  Jul 25, 2017

### 17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details