+0

# One more :)

+1
273
8
+676

Note: Continuous Fraction.

Good Luck Boys :)

TakahiroMaeda  May 3, 2017
Sort:

#1
+505
+1

$$\frac{1+\sqrt{5}}{2}$$

It's the Fibonacci sequence! The geometric difference between the numbers is asymptotic to the above: 1/1, 2/1, 3/2, 5/3, 8/5, etc. To get the next number in the series, simply take the sum of the previous 2.

helperid1839321  May 3, 2017
#2
+91225
0

Interesting :)

Let

$$y=x+\frac{1}{x+\frac{1}{x+\frac{1}{x+....}}}\\ so\\ y=x+\frac{1}{y}\\ x=y-y^{-1}\\ \frac{dx}{dy}=1+y^{-2}\\ dx=(1+y^{-2})dy\\when \quad x=0\quad \\ y=\frac{1}{y}\\ y^2=1\\ y=\pm1 \qquad \text{this is a stumbling block, I only want one value} \\when\quad x=1\\ 1=y-y^{-1}\\ y=y^2-1\\y^2-y-1=0 \\y=\frac{1\pm\sqrt{5}}{2} \quad \text{two answers again :(}$$

$$\displaystyle\int_0^1 x+\frac{1}{x+\frac{1}{x+\frac{1}{x+....}}}dx\\ =\displaystyle\int_?^? y(1+y^{-2})dy\\ =\displaystyle\int_?^? y+y^{-1}dy\\ =\left[ \frac{y^2}{2}+lny \right ]_?^?$$

Now I have to think about those questions marks

To be continued   :)

I can see Heureka's answer underneath ..... I'll have to think about it more but I will leave this here for now.

Maybe Heuarka, you might like to commnent on what I have done ??

Melody  May 3, 2017
#3
+91225
+1

You cannot find the log of a negative number so I am goinf for the positive values.( this is not great mathematical reasoning here:

I'd believe Heureka if I were you   LOL

$$\displaystyle\int_0^1 x+\frac{1}{x+\frac{1}{x+\frac{1}{x+....}}}dx\\ =\displaystyle\int_1^{\frac{1+\sqrt5}{2}} y(1+y^{-2})dy\\ =\displaystyle\int_1^{\frac{1+\sqrt5}{2}} y+y^{-1}dy\\ =\left[ \frac{y^2}{2}+lny \right ]_1^{\frac{1+\sqrt5}{2}}\\ =\left[ ({\frac{1+\sqrt5}{2})^2}\div2+ln(\frac{1+\sqrt5}{2}) -\frac{1}{2}\right ]\\ =\left[ {\frac{(1+\sqrt5)^2}{8}}+ln(\frac{1+\sqrt5}{2}) -\frac{4}{8}\right ]\\ =\left[ \frac{6+2\sqrt5-4}{8}+ln(\frac{1+\sqrt5}{2}) \right ]\\ =\left[ \frac{2+2\sqrt5}{8}+ln(\frac{1+\sqrt5}{2}) \right ]\\ = \frac{1+\sqrt5}{4}+ln(\frac{1+\sqrt5}{2}) \\$$

Melody  May 3, 2017
#4
+91225
0

Oh dear, these two regions are not the same area.  What a pity.

I guess I better keep thinking!

Melody  May 3, 2017
#5
+310
+2

Ok. I think i got this-

Lets call the expression f(x). we know that x+1/f(x)=f(x). We can multiply by f(x) and get-

x*f(x)+1=f(x)    |  subtract x*f(x)

(f(x)-x/2)2=1+x2/4

f(x)=x/2+(1+x2/4)1/2.

Im terrible at finding integrals, so i used an integral calculator:

its integral is:

1/4 (x (sqrt(x^2 + 4) + x) + 4 sinh^(-1)(x/2)) + constant

Ehrlich  May 3, 2017
edited by Ehrlich  May 3, 2017
#6
+18777
+1

One more :)

Continuous Fraction.

$$\begin{array}{|rcll|} \hline \begin{equation*} sum=x+\cfrac{1}{x+\cfrac{1}{x+\cfrac{1}{x+\cdots}}} \end{equation*}\\\\ sum &=& x + \frac{1}{sum} \\ sum - \frac{1}{sum} &=& x \\ \frac{sum^2-1}{sum} &=& x \\ sum^2-1 &=& x\cdot sum \\ sum^2-x\cdot sum -1 &=& 0 \\ sum &=& \frac{x\pm\sqrt{x^2-4\cdot(-1)} }{2} \\ \mathbf{sum} & \mathbf{=} & \mathbf{ \frac{x\pm\sqrt{x^2+4} }{2} } \\ \hline \end{array}$$

$$\small{ \begin{array}{llcl} \int \limits_{x=0}^{1} { x+\cfrac{1}{x+\cfrac{1}{x+\cfrac{1}{x+\cdots}}} \ dx} \\\\ = \int \limits_{x=0}^{1} { sum \ dx} \\ = \int \limits_{x=0}^{1} { \mathbf{ \frac{x\pm\sqrt{x^2+4} }{2} } \ dx} \\ = \frac12 \int \limits_{x=0}^{1} {x \ dx } \pm \int \limits_{x=0}^{1} { \frac{ \sqrt{x^2+4} }{2} \ dx } \\ = \frac12 [\frac{x^2}{2}]_{x=0}^{1} \pm \int \limits_{x=0}^{1} { 2\cdot \frac{ \sqrt{(\frac{x}{2})^2+1} }{2} \ dx } \\ = \frac14 \pm \int \limits_{x=0}^{1} { \sqrt{(\frac{x}{2})^2+1} \ dx } \\ & \text{substitute:}\\ & \boxed{~ \frac{x}{2}=\sinh(z) \qquad z = \text{arsinh}\left(\frac{x}{2}\right)\\ dx = 2\cdot \cosh(z)\ dz ~}\\ & \text{new limits:}\\ & \boxed{~ x=0: \qquad z=\text{arsinh}\left(\frac{0}{2}\right) \Rightarrow z = 0 \\ x=1: \qquad z=\text{arsinh}\left(\frac{1}{2}\right) ~}\\ = \frac14 \pm \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \sqrt{\sinh^2(z)+1} \cdot 2\cdot \cosh(z)\ dz } \\ & \boxed{~ \cosh^2(z) = 1+\sinh^2(z) ~}\\ = \frac14 \pm \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \sqrt{\cosh^2(z)}\cdot 2\cdot \cosh(z)\ dz } \\ = \frac14 \pm \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \cosh(z)\cdot 2\cdot \cosh(z) \ dz } \\ = \frac14 \pm 2 \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \cosh^2(z) \ dz } \\ & \boxed{~ \cosh^2(z) = \frac12+\frac12\cosh(2z) ~}\\ = \frac14 \pm 2 \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \frac12+\frac12\cosh(2z) \ dz } \\ = \frac14 \pm \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { 1+ \cosh(2z) \ dz } \\ = \frac14 \pm \Big( \int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \ dz } +\int \limits_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } { \cosh(2z) \ dz } \Big) \\ = \frac14 \pm \Big( \left[z\right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right)} + \left[\frac{\sinh(2z)}{2} \right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } \Big) \\ & \boxed{~ \sinh(2z) = 2\sinh(z) \cosh(z) ~}\\ = \frac14 \pm \Big( \left[z\right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right)} + \left[\frac{2\sinh(z) \cosh(z)}{2} \right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } \Big) \\ = \frac14 \pm \Big( \left[z\right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right)} + \left[ \sinh(z) \cosh(z) \right]_{x=0}^{\text{arsinh}\left(\frac{1}{2}\right) } \Big) \\ = \frac14 \pm \Big( \text{arsinh}\left(\frac{1}{2}\right) + \frac12 \cdot \cosh\left(\text{arsinh}\left(\frac{1}{2}\right)\right) \Big) \\ = \frac14 \pm \Big( 0.4812118250596 + \frac12 \cdot \cosh\left( 0.4812118250596\right) \Big) \\ = \frac14 \pm \Big( 1.0402288194345508 \Big) \\ \end{array} }$$

$$\begin{array}{|rcll|} \hline = \frac14 + 1.0402288194345508 \qquad &\text{or}&\qquad = \frac14 - 1.0402288194345508 \\ = 1.2902288194345508 \qquad &\text{or}& \qquad =-0.7902288194345508 \\ \hline \end{array}$$

heureka  May 3, 2017
edited by heureka  May 3, 2017
#7
+91225
0

Thanks Heureka :)

Melody  May 3, 2017
#8
+310
+2

You truly are the LaTeX master

Although i believe the expression cant be

(x-(x2+4)1/2)/2 because that means its negative, and im quite sure it cant be negative. I cant prove it properly right now, but i believe there is only one answer to the question.

Ehrlich  May 3, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details