+0  
 
+1
68
4
avatar+58 

Point A, B , C and D lies on a straight line 

AB : BD = 1:5

AC : CD = 7:11

Work out AB : BC : CD

thanks

YEEEEEET  Nov 22, 2017

Best Answer 

 #2
avatar+5553 
+3

This is a neat question!!  laughsmileysmiley

 

This drawing shows the information from the problem:

 

 

1s + 5s   =   7t + 11t

6s   =   18t

1s   =   3t               (This is like a unit conversion!)

 

And...

 

    AB : BC : CD

 

=  1s : 7t - 1s : 11t                  Let's "convert"  s  into  t ,  using  1s  =  3t .

 

=  3t : 7t - 3t : 11t

 

=  3t : 4t : 11t

 

=  3 : 4 : 11

hectictar  Nov 22, 2017
edited by hectictar  Nov 22, 2017
edited by hectictar  Nov 22, 2017
Sort: 

4+0 Answers

 #1
avatar+79835 
+3

Haven't seen one like this before.....!!!

 

Since AB : BD  =  1 : 5   so...from A to D  there are  1 + 5 = 6 parts

And since AC : CD  = 7 : 11   and we can divide each 6th part into 7 + 11 = 18 more parts

So.....from A to D there are   6 * 18  =   108  equal parts

 

So  AB  =   [108 / 6] * 1  = 18  units

And BD  =  [108 / 6] * 5  = 90 units

And AC =  [ 108/ 18] * 7  = 42 units

And CD  =  [ 108 / 18] * 11 =   66 units

 

AB  = 18        

BC =  AC - AB =  42 - 18  =  24 units

CD  =  66 units

 

A           B            C                D

     18    +    24     +        66            =       108   

 

So   AB :   BC : CD    =    18 : 24 : 66  =    3 : 4 : 11

 

 

cool cool cool          

CPhill  Nov 22, 2017
 #2
avatar+5553 
+3
Best Answer

This is a neat question!!  laughsmileysmiley

 

This drawing shows the information from the problem:

 

 

1s + 5s   =   7t + 11t

6s   =   18t

1s   =   3t               (This is like a unit conversion!)

 

And...

 

    AB : BC : CD

 

=  1s : 7t - 1s : 11t                  Let's "convert"  s  into  t ,  using  1s  =  3t .

 

=  3t : 7t - 3t : 11t

 

=  3t : 4t : 11t

 

=  3 : 4 : 11

hectictar  Nov 22, 2017
edited by hectictar  Nov 22, 2017
edited by hectictar  Nov 22, 2017
 #3
avatar+79835 
+2

Thanks, hectictar......I was "feeling my way," here....but...I like your method better  !!

 

 

cool cool cool

CPhill  Nov 22, 2017
 #4
avatar+5553 
+3

Thank you! I think I learned something new from this problem!  smileysmiley

hectictar  Nov 22, 2017

18 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details