+0  
 
+1
1
81
1
avatar

 

Given that (x^2−4) is a factor of the polynomial  f(x), where f(x) =4x^4+7x^3 +ax^2 +bx +8. Find the values of a and b and hence factorize f(x)completley. Find the set of values for which f(x)=0

Guest Dec 2, 2017
Sort: 

1+0 Answers

 #1
avatar+79846 
+2

If x^2 - 4  is a factor.....then  (x - 2)  and (x + 2)  are  factors

Which means that   2  and - 2 are roots

 

So

4(2)^4+7(2)^3 +a(2)^2 +b(2) +8  = 0

4(-2)^4+7(-2)^3 +a(-2)^2 + b(-2) +8  = 0

 

Add these and we have that

 

128   +  8a   +   16  = 0    ⇒  8a  =  -144  ⇒   a  =  - 18

 

Subtract them and we have that

 

112 + 4b   =   0

28 + b  =  0    ⇒   b  = -28 

 

So....the polynomial is

 

4x^2  + 7x^3  - 18x^2 - 28x  + 8       and we can write this as

 

[4x^2  + 7x^3  - 2x^2]  -  16x^2  - 28x + 8  

x^2 (4x^2  + 7x - 2)  -  4 ( 4x^2 + 7x - 2 )

(x^2 - 4) (4x^2 + 7x - 2)

(x^2 - 4) (4x - 1) (x + 2) 

(x - 2) (x + 2) (4x - 1) (x + 2)  =  0

 

The  values that make this  = 0   are     x= 2, x = 1/4  and x  = -2

 

 

cool cool cool

CPhill  Dec 2, 2017

30 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details