+0

prove identity

0
77
2

prove sin(3/2 x)*sin x / sin(1/2 x) = sin x + sin 2x

Guest Jul 28, 2017
Sort:

2+0 Answers

#1
0

Verify the following identity:
sin((3 x)/2) (sin(x))/(sin(x/2)) = sin(x) + sin(2 x)

Multiply both sides by sin(x/2):
sin(x) sin((3 x)/2) = ^?sin(x/2) (sin(x) + sin(2 x))

sin(x) sin((3 x)/2) = 1/2 (cos(x - (3 x)/2) - cos(x + (3 x)/2)) = 1/2 (cos(-x/2) - cos((5 x)/2)):
(cos(-x/2) - cos((5 x)/2))/(2) = ^?sin(x/2) (sin(x) + sin(2 x))

Use the identity cos(-x/2) = cos(x/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?sin(x/2) (sin(x) + sin(2 x))

sin(x/2) (sin(x) + sin(2 x)) = sin(x/2) sin(x) + sin(x/2) sin(2 x):
(cos(x/2) - cos((5 x)/2))/(2) = ^?sin(x/2) sin(x) + sin(x/2) sin(2 x)

sin(x/2) sin(x) = 1/2 (cos(x/2 - x) - cos(x/2 + x)) = 1/2 (cos(-x/2) - cos((3 x)/2)):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(-x/2) - cos((3 x)/2))/(2) + sin(x/2) sin(2 x)

Use the identity cos(-x/2) = cos(x/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2) - cos((3 x)/2))/(2) + sin(x/2) sin(2 x)

(cos(x/2) - cos((3 x)/2))/(2) = 1/2 cos(x/2) - 1/2 cos((3 x)/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2))/(2) - (cos((3 x)/2))/(2) + sin(x/2) sin(2 x)

sin(x/2) sin(2 x) = 1/2 (cos(x/2 - 2 x) - cos(x/2 + 2 x)) = 1/2 (cos(-(3 x)/2) - cos((5 x)/2)):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2))/(2) - (cos((3 x)/2))/(2) + (cos(-(3 x)/2) - cos((5 x)/2))/(2)

Use the identity cos(-(3 x)/2) = cos((3 x)/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2))/(2) - (cos((3 x)/2))/(2) + (cos((3 x)/2) - cos((5 x)/2))/(2)

(cos((3 x)/2) - cos((5 x)/2))/(2) = 1/2 cos((3 x)/2) - 1/2 cos((5 x)/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2))/(2) - (cos((3 x)/2))/(2) + (cos((3 x)/2))/(2) - (cos((5 x)/2))/(2)

(cos(x/2))/(2) - (cos((3 x)/2))/(2) + (cos((3 x)/2))/(2) - (cos((5 x)/2))/(2) = 1/2 cos(x/2) - 1/2 cos((5 x)/2):
(cos(x/2) - cos((5 x)/2))/(2) = ^?(cos(x/2))/(2) - (cos((5 x)/2))/(2)

1/2 (cos(x/2) - cos((5 x)/2)) = 1/2 cos(x/2) - 1/2 cos((5 x)/2):
1/2 cos(x/2) - 1/2 cos((5 x)/2) = ^?1/2 cos(x/2) - 1/2 cos((5 x)/2)

The left hand side and right hand side are identical:
Answer: | (identity has been verified)

Guest Jul 28, 2017
#2
+1

Using the trig identity

$$\displaystyle \sin A+\sin B=2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$ ,

RHS = $$\displaystyle \sin 2x + \sin x = 2 \sin \left( \frac{3x}{2}\right)\cos\left(\frac{x}{2}\right)= \frac{2 \sin \left( \frac{3x}{2}\right)\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} =\frac{\sin \left( \frac{3x}{2}\right)\sin\left(x\right)}{\sin\left(\frac{x}{2}\right)}$$ .

Tiggsy

Guest Jul 28, 2017

22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details