Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+12
1224
3
avatar

how high is rhombus if diagonals are 36 cm and 12cm

 Jan 24, 2016

Best Answer 

 #1
avatar+26396 
+10

how high is rhombus if diagonals are 36 cm and 12cm

 

e = one diagonal

f = the other diagonal

e=12 cm and f=36 cm

 

The four sides all have the same length a

h ist the height of the rhombus

 

cos-rule

e2=2a22a2cos(A)f2=2a22a2cos(B)2A+2B=360A+B=180B=180Acos(B)=cos(180A)=cos(A)e2=2a22a2cos(A)f2=2a2+2a2cos(A)cos(A)=2a2e22a2=f22a22a22a2e2=f22a24a2=e2+f22a=e2+f2a=e2+f22

 

cos(A)=2a2e22a2cos2(A)=(2a2e2)24a41cos2(A)=1(2a2e2)24a41cos2(A)=4a4(2a2e2)24a41cos2(A)=4a44a2+4a2e2e44a41cos2(A)=4a2e2e44a41cos2(A)=e2(4a2e2)4a4|4a2=e2+f21cos2(A)=e2(e2+f2e2)4a41cos2(A)=e2f24a4|sin2(A)=1cos2(A)sin2(A)=e2f24a4sin(A)=ef2a2

 

h=asin(A)h=aef2a2h=ef2a|2a=e2+f2 h=efe2+f2 

 

h=1236122+362h=4321440h=43237.9473319220h=11.3841995766 cm

 

laugh

 Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
 #1
avatar+26396 
+10
Best Answer

how high is rhombus if diagonals are 36 cm and 12cm

 

e = one diagonal

f = the other diagonal

e=12 cm and f=36 cm

 

The four sides all have the same length a

h ist the height of the rhombus

 

cos-rule

e2=2a22a2cos(A)f2=2a22a2cos(B)2A+2B=360A+B=180B=180Acos(B)=cos(180A)=cos(A)e2=2a22a2cos(A)f2=2a2+2a2cos(A)cos(A)=2a2e22a2=f22a22a22a2e2=f22a24a2=e2+f22a=e2+f2a=e2+f22

 

cos(A)=2a2e22a2cos2(A)=(2a2e2)24a41cos2(A)=1(2a2e2)24a41cos2(A)=4a4(2a2e2)24a41cos2(A)=4a44a2+4a2e2e44a41cos2(A)=4a2e2e44a41cos2(A)=e2(4a2e2)4a4|4a2=e2+f21cos2(A)=e2(e2+f2e2)4a41cos2(A)=e2f24a4|sin2(A)=1cos2(A)sin2(A)=e2f24a4sin(A)=ef2a2

 

h=asin(A)h=aef2a2h=ef2a|2a=e2+f2 h=efe2+f2 

 

h=1236122+362h=4321440h=43237.9473319220h=11.3841995766 cm

 

laugh

heureka Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
 #2
avatar+130466 
+5

Here's another method :

 

Length of a side  = sqrt(6^2 + 18^2)  = sqrt (36 + 324)  = sqrt (360) 

 

And using the Law of Cosines, we can find the smaller interior angle of the rhombus

 

12^2  = 360 + 360 - 2(360)cos(theta)

 

[144 - 360 - 360]  / [ -2(360)]  = cos (theta)

 

cos-1  [ [144 - 360 - 360]  / [ -2(360] ]  = theta  = 36.869897645844°

 

Using the Law of Sines.....we can find the height - h - as follows :

 

sqrt(360)   = h / sin(36.869897645844°)

 

h = sqrt(360)* sin (36.869897645844°)  =  11.3841995766061656  cm

 

Here's a pic :  [DE  is the height]

 

 

 

 

cool cool cool

 Jan 26, 2016
 #3
avatar+26396 
+10

e = one diagonal

f = the other diagonal

h ist the height of the rhombus

 

 h=efe2+f2 

 

or

 

h=efe2+f2h=1e2+f2efh=1e2e2f2+f2e2f2h=11f2+1e21h=1f2+1e21h2=1f2+1e21h2=1e2+1f2

 

 1h2=1e2+1f2 

 

laugh

 Jan 26, 2016
edited by heureka  Jan 26, 2016

2 Online Users

avatar