+0

# rhombus

+12
268
3

how high is rhombus if diagonals are 36 cm and 12cm

Guest Jan 24, 2016

#1
+18712
+10

how high is rhombus if diagonals are 36 cm and 12cm

e = one diagonal

f = the other diagonal

$$e = 12\ cm$$ and $$f = 36\ cm$$

The four sides all have the same length $$a$$

$$h$$ ist the height of the rhombus

cos-rule

$$\begin{array}{rcll} e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 - 2a^2\cdot \cos{(B)} \\\\ 2A+2B &=& 360^\circ \\ A+B &=& 180^\circ \\ B &=& 180^\circ - A \\ \cos{(B)} &=& \cos{(180^\circ - A)} = -\cos{(A)} \\\\ e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 + 2a^2\cdot \cos{(A)} \\\\ \cos{(A)} = \frac{2a^2-e^2}{2a^2} &=& \frac{f^2-2a^2}{2a^2}\\ 2a^2-e^2 &=& f^2-2a^2 \\ 4a^2 &=& e^2 + f^2\\ 2a &=& \sqrt{ e^2 + f^2 } \\ \mathbf{a} &\mathbf{=}& \mathbf{\frac{ \sqrt{ e^2 + f^2 } } {2} }\\ \end{array}$$

$$\begin{array}{rcll} \cos{(A)} &=& \frac{2a^2-e^2}{2a^2} \\ \cos^2{(A)} &=& \frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& 1-\frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - (2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - 4a^2 + 4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot (4a^2-e^2) }{4a^4} \qquad | \qquad 4a^2 = e^2 + f^2\\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot ( e^2 + f^2-e^2) }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \qquad | \qquad \sin^2{(A)}=1-\cos^2{(A)}\\ \sin^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \\ \mathbf{\sin{(A)}} &\mathbf{=}&\mathbf{\frac{ e\cdot f }{2a^2} } \\ \end{array}$$

$$\begin{array}{rcll} h &=& a\cdot \sin{(A)} \\ h &=& a\cdot \frac{ e\cdot f }{2a^2} \\ h &=&\frac{ e\cdot f }{2a} \qquad & | \qquad 2a = \sqrt{ e^2 + f^2 }\\ \end{array} \\ \boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\$$

$$\begin{array}{rcll} h &=&\frac{ 12\cdot 36 }{\sqrt{ 12^2 + 36^2 }} \\ h &=&\frac{ 432 }{\sqrt{ 1440 }} \\ h &=&\frac{ 432 }{37.9473319220} \\\\ \mathbf{h} &\mathbf{=}& \mathbf{11.3841995766\ cm }\\ \end{array}$$

heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
Sort:

#1
+18712
+10

how high is rhombus if diagonals are 36 cm and 12cm

e = one diagonal

f = the other diagonal

$$e = 12\ cm$$ and $$f = 36\ cm$$

The four sides all have the same length $$a$$

$$h$$ ist the height of the rhombus

cos-rule

$$\begin{array}{rcll} e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 - 2a^2\cdot \cos{(B)} \\\\ 2A+2B &=& 360^\circ \\ A+B &=& 180^\circ \\ B &=& 180^\circ - A \\ \cos{(B)} &=& \cos{(180^\circ - A)} = -\cos{(A)} \\\\ e^2 &=& 2a^2 - 2a^2\cdot \cos{(A)} \\ f^2 &=& 2a^2 + 2a^2\cdot \cos{(A)} \\\\ \cos{(A)} = \frac{2a^2-e^2}{2a^2} &=& \frac{f^2-2a^2}{2a^2}\\ 2a^2-e^2 &=& f^2-2a^2 \\ 4a^2 &=& e^2 + f^2\\ 2a &=& \sqrt{ e^2 + f^2 } \\ \mathbf{a} &\mathbf{=}& \mathbf{\frac{ \sqrt{ e^2 + f^2 } } {2} }\\ \end{array}$$

$$\begin{array}{rcll} \cos{(A)} &=& \frac{2a^2-e^2}{2a^2} \\ \cos^2{(A)} &=& \frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& 1-\frac{(2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - (2a^2-e^2)^2}{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^4 - 4a^2 + 4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=& \frac{4a^2e^2-e^4 }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot (4a^2-e^2) }{4a^4} \qquad | \qquad 4a^2 = e^2 + f^2\\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot ( e^2 + f^2-e^2) }{4a^4} \\ 1-\cos^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \qquad | \qquad \sin^2{(A)}=1-\cos^2{(A)}\\ \sin^2{(A)} &=&\frac{ e^2\cdot f^2 }{4a^4} \\ \mathbf{\sin{(A)}} &\mathbf{=}&\mathbf{\frac{ e\cdot f }{2a^2} } \\ \end{array}$$

$$\begin{array}{rcll} h &=& a\cdot \sin{(A)} \\ h &=& a\cdot \frac{ e\cdot f }{2a^2} \\ h &=&\frac{ e\cdot f }{2a} \qquad & | \qquad 2a = \sqrt{ e^2 + f^2 }\\ \end{array} \\ \boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\$$

$$\begin{array}{rcll} h &=&\frac{ 12\cdot 36 }{\sqrt{ 12^2 + 36^2 }} \\ h &=&\frac{ 432 }{\sqrt{ 1440 }} \\ h &=&\frac{ 432 }{37.9473319220} \\\\ \mathbf{h} &\mathbf{=}& \mathbf{11.3841995766\ cm }\\ \end{array}$$

heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
edited by heureka  Jan 25, 2016
#2
+78618
+5

Here's another method :

Length of a side  = sqrt(6^2 + 18^2)  = sqrt (36 + 324)  = sqrt (360)

And using the Law of Cosines, we can find the smaller interior angle of the rhombus

12^2  = 360 + 360 - 2(360)cos(theta)

[144 - 360 - 360]  / [ -2(360)]  = cos (theta)

cos-1  [ [144 - 360 - 360]  / [ -2(360] ]  = theta  = 36.869897645844°

Using the Law of Sines.....we can find the height - h - as follows :

sqrt(360)   = h / sin(36.869897645844°)

h = sqrt(360)* sin (36.869897645844°)  =  11.3841995766061656  cm

Here's a pic :  [DE  is the height]

CPhill  Jan 26, 2016
#3
+18712
+10

e = one diagonal

f = the other diagonal

h ist the height of the rhombus

$$\boxed{~ \begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }} \\ \end{array} ~}\\$$

or

$$\begin{array}{rcll} h &=&\frac{ e\cdot f }{\sqrt{ e^2 + f^2 }}\\ h &=&\frac{ 1 }{ \frac { \sqrt{ e^2 + f^2 }}{ e\cdot f}} \\ h &=&\frac{ 1 }{ \sqrt{ \frac{e^2}{e^2\cdot f^2} + \frac{f^2}{e^2\cdot f^2} }} \\ h &=&\frac{ 1 }{ \sqrt{ \frac{1}{f^2} + \frac{1}{e^2} }} \\ \frac{1}{h} &=&\sqrt{ \frac{1}{f^2} + \frac{1}{e^2} } \\ \frac{1}{h^2} &=&\frac{1}{f^2} + \frac{1}{e^2} \\ \frac{1}{h^2} &=&\frac{1}{e^2} + \frac{1}{f^2} \\ \end{array}$$

$$\boxed{~ \begin{array}{rcll} \frac{1}{h^2} &=&\frac{1}{e^2} + \frac{1}{f^2} \end{array} ~}$$

heureka  Jan 26, 2016
edited by heureka  Jan 26, 2016

### 10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details