how high is rhombus if diagonals are 36 cm and 12cm
e = one diagonal
f = the other diagonal
e=12 cm and f=36 cm
The four sides all have the same length a
h ist the height of the rhombus
cos-rule
e2=2a2−2a2⋅cos(A)f2=2a2−2a2⋅cos(B)2A+2B=360∘A+B=180∘B=180∘−Acos(B)=cos(180∘−A)=−cos(A)e2=2a2−2a2⋅cos(A)f2=2a2+2a2⋅cos(A)cos(A)=2a2−e22a2=f2−2a22a22a2−e2=f2−2a24a2=e2+f22a=√e2+f2a=√e2+f22
cos(A)=2a2−e22a2cos2(A)=(2a2−e2)24a41−cos2(A)=1−(2a2−e2)24a41−cos2(A)=4a4−(2a2−e2)24a41−cos2(A)=4a4−4a2+4a2e2−e44a41−cos2(A)=4a2e2−e44a41−cos2(A)=e2⋅(4a2−e2)4a4|4a2=e2+f21−cos2(A)=e2⋅(e2+f2−e2)4a41−cos2(A)=e2⋅f24a4|sin2(A)=1−cos2(A)sin2(A)=e2⋅f24a4sin(A)=e⋅f2a2
h=a⋅sin(A)h=a⋅e⋅f2a2h=e⋅f2a|2a=√e2+f2 h=e⋅f√e2+f2
h=12⋅36√122+362h=432√1440h=43237.9473319220h=11.3841995766 cm
how high is rhombus if diagonals are 36 cm and 12cm
e = one diagonal
f = the other diagonal
e=12 cm and f=36 cm
The four sides all have the same length a
h ist the height of the rhombus
cos-rule
e2=2a2−2a2⋅cos(A)f2=2a2−2a2⋅cos(B)2A+2B=360∘A+B=180∘B=180∘−Acos(B)=cos(180∘−A)=−cos(A)e2=2a2−2a2⋅cos(A)f2=2a2+2a2⋅cos(A)cos(A)=2a2−e22a2=f2−2a22a22a2−e2=f2−2a24a2=e2+f22a=√e2+f2a=√e2+f22
cos(A)=2a2−e22a2cos2(A)=(2a2−e2)24a41−cos2(A)=1−(2a2−e2)24a41−cos2(A)=4a4−(2a2−e2)24a41−cos2(A)=4a4−4a2+4a2e2−e44a41−cos2(A)=4a2e2−e44a41−cos2(A)=e2⋅(4a2−e2)4a4|4a2=e2+f21−cos2(A)=e2⋅(e2+f2−e2)4a41−cos2(A)=e2⋅f24a4|sin2(A)=1−cos2(A)sin2(A)=e2⋅f24a4sin(A)=e⋅f2a2
h=a⋅sin(A)h=a⋅e⋅f2a2h=e⋅f2a|2a=√e2+f2 h=e⋅f√e2+f2
h=12⋅36√122+362h=432√1440h=43237.9473319220h=11.3841995766 cm
Here's another method :
Length of a side = sqrt(6^2 + 18^2) = sqrt (36 + 324) = sqrt (360)
And using the Law of Cosines, we can find the smaller interior angle of the rhombus
12^2 = 360 + 360 - 2(360)cos(theta)
[144 - 360 - 360] / [ -2(360)] = cos (theta)
cos-1 [ [144 - 360 - 360] / [ -2(360] ] = theta = 36.869897645844°
Using the Law of Sines.....we can find the height - h - as follows :
sqrt(360) = h / sin(36.869897645844°)
h = sqrt(360)* sin (36.869897645844°) = 11.3841995766061656 cm
Here's a pic : [DE is the height]