Please give the next 4 terms of this sequence. Thanks for any help:
2, 4, 7, 10, 15, 18, 23, 26............640 (is 100th term)
Please give the next 4 terms of this sequence. Thanks for any help:
2, 4, 7, 10, 15, 18, 23, 26............640 (is 100th term)
Thanks heureka: brilliant work!. In my book it is stated slightly different: It is the sequence of natual or counting numbers added to prime numbers - 1. So, we have:
Counting numbers: 1, 2, 3, 4, 5, 6............
Prime numbers + 2, 3, 5, 7, 11, 13...............
Subtract 1 from 2, 4, 7, 10, 15, 18..........etc.
each term
The formula is an=an−1+p(n)−p(n−1)+1n≥2a1=2 a1=2a2=a1+p(2)−p(1)+1=2+p(2)−2+1=p(2)+1a3=a2+p(3)−p(2)+1=( p(2)+1 )+p(3)−p(2)+1=p(3)+2a4=a3+p(4)−p(3)+1=( p(3)+2 )+p(4)−p(3)+1=p(4)+3a5=a4+p(5)−p(4)+1=( p(4)+3 )+p(5)−p(4)+1=p(5)+4⋯an=an−1+p(n)−p(n−1)+1=( p(n−1)+n−2 )+p(n)−p(n−1)+1=p(n)+n−1 an=n+p(n)−1
Please give the next 4 terms of this sequence. Thanks for any help:
2, 4, 7, 10, 15, 18, 23, 26............640 (is 100th term)
We need the prime number table
The prime numbers. np(n)np(n)np(n)np(n)np(n)np(n)122173411796128381419101547232279421816229382421⋯⋯352383431916330783431⋯⋯472489441936431184433⋯⋯5112597451976531385439⋯⋯61326101461996631786443⋯⋯71727103472116733187449⋯⋯81928107482236833788457⋯⋯92329109492276934789461⋯⋯102930113502297034990463⋯⋯113131127512337135391467⋯⋯123732131522397235992479⋯⋯134133137532417336793487⋯⋯144334139542517437394491⋯⋯154735149552577537995499⋯⋯165336151562637638396503⋯⋯175937157572697738997509⋯⋯186138163582717839798521⋯⋯196739167592777940199523⋯⋯2071401736028180409100541⋯⋯
The formula is an=an−1+p(n)−p(n−1)+1n≥2a1=2
a1=2a2=a1+p(2)−p(1)+1=2+3−2+1=4a3=a2+p(3)−p(2)+1=4+5−3+1=7a4=a3+p(4)−p(3)+1=7+7−5+1=10a5=a4+p(5)−p(4)+1=10+11−7+1=15a6=a5+p(6)−p(5)+1=15+13−11+1=18a7=a6+p(7)−p(6)+1=18+17−13+1=23a8=a7+p(8)−p(7)+1=23+19−17+1=26a9=a8+p(9)−p(8)+1=26+23−19+1=31a10=a9+p(10)−p(9)+1=31+29−23+1=38a11=a10+p(11)−p(10)+1=38+31−29+1=41a12=a11+p(12)−p(11)+1=41+37−31+1=48⋯a100=a99+p(100)−p(99)+1=621+541−523+1=640
a1⋯a50na(n)na(n)na(n)na(n)na(n)1211412193311574121924124822100321624222237135323105331694323341014562411234172442365151561251213518345241618166826126361864624472317752712937193472578261878281343820048270931198529137392054927510382090301424021250278
a51⋯a101na(n)na(n)na(n)na(n)na(n)na(n)51283613437142381499915571016475229062354724308250292570⋯⋯5329363369734398351393579⋯⋯5430464374744468451694584⋯⋯5531165377754538552395593⋯⋯5631866382764588652896598⋯⋯5732567397774658753597605⋯⋯5832868404784748854498618⋯⋯5933569415794798954999621⋯⋯60340704188048890552100640⋯⋯
Thanks Heureka,
Here is a site that you will like guest :)
It is the
Online Encyclopeadia of Integer Sequences :)
https://oeis.org/search?q=2%2C+4%2C+7%2C+10%2C+15%2C+18%2C+23%2C+26&sort=&language=english&go=Search
Thanks heureka: brilliant work!. In my book it is stated slightly different: It is the sequence of natual or counting numbers added to prime numbers - 1. So, we have:
Counting numbers: 1, 2, 3, 4, 5, 6............
Prime numbers + 2, 3, 5, 7, 11, 13...............
Subtract 1 from 2, 4, 7, 10, 15, 18..........etc.
each term
Please give the next 4 terms of this sequence. Thanks for any help:
2, 4, 7, 10, 15, 18, 23, 26............640 (is 100th term)
Thanks heureka: brilliant work!. In my book it is stated slightly different: It is the sequence of natual or counting numbers added to prime numbers - 1. So, we have:
Counting numbers: 1, 2, 3, 4, 5, 6............
Prime numbers + 2, 3, 5, 7, 11, 13...............
Subtract 1 from 2, 4, 7, 10, 15, 18..........etc.
each term
The formula is an=an−1+p(n)−p(n−1)+1n≥2a1=2 a1=2a2=a1+p(2)−p(1)+1=2+p(2)−2+1=p(2)+1a3=a2+p(3)−p(2)+1=( p(2)+1 )+p(3)−p(2)+1=p(3)+2a4=a3+p(4)−p(3)+1=( p(3)+2 )+p(4)−p(3)+1=p(4)+3a5=a4+p(5)−p(4)+1=( p(4)+3 )+p(5)−p(4)+1=p(5)+4⋯an=an−1+p(n)−p(n−1)+1=( p(n−1)+n−2 )+p(n)−p(n−1)+1=p(n)+n−1 an=n+p(n)−1