+0

# Sin(5x)=Sin(3x)

+10
2945
5

Find all posible solutions

Sin(5x)=Sin(3x)

Guest Dec 4, 2015

#3
+80785
+15

sin(3x)  = sin(4x -x )  = sin4xcosx - sinxcos4x

sin(5x)  = sin(4x + x)  = sin4xcosx + sinxcos4x     .......so....

sin4xcosx + sinxcos4x  =  sin4xcosx - sinxcos4x

2sinxcos4x  = 0      divide both sides by 2

sinxcos4x = 0

So either

sinx  = 0     which happens at 0 + nPi    where n is an integer

or

cos(4x)  = 0

cos(x)  = 0   at   pi/2 and  3pi/2

So.....dividing each angle by 4 we have that

cos(4x)  =  0   at    pi/8 + n(pi/4)   where n is an integer

And   at    3pi/8 + n(pi/4).....however  the previous solution covers this one as well....so we have.......pi/8 + n(pi/4)

Here's the graph  of the intersection points [ in degrees].......https://www.desmos.com/calculator/jv5zqyexum

CPhill  Dec 4, 2015
edited by CPhill  Dec 5, 2015
edited by CPhill  Dec 5, 2015
Sort:

#1
+495
+15

sin(5x) = sin(3x)

x = 0 + πn

x=π/8 + πn/4

LambLamb  Dec 4, 2015
edited by LambLamb  Dec 4, 2015
#2
+91411
+10

Good work LambLamb,

I got exactly the same answer.

But

are you going to show how you did it?

Melody  Dec 4, 2015
#3
+80785
+15

sin(3x)  = sin(4x -x )  = sin4xcosx - sinxcos4x

sin(5x)  = sin(4x + x)  = sin4xcosx + sinxcos4x     .......so....

sin4xcosx + sinxcos4x  =  sin4xcosx - sinxcos4x

2sinxcos4x  = 0      divide both sides by 2

sinxcos4x = 0

So either

sinx  = 0     which happens at 0 + nPi    where n is an integer

or

cos(4x)  = 0

cos(x)  = 0   at   pi/2 and  3pi/2

So.....dividing each angle by 4 we have that

cos(4x)  =  0   at    pi/8 + n(pi/4)   where n is an integer

And   at    3pi/8 + n(pi/4).....however  the previous solution covers this one as well....so we have.......pi/8 + n(pi/4)

Here's the graph  of the intersection points [ in degrees].......https://www.desmos.com/calculator/jv5zqyexum

CPhill  Dec 4, 2015
edited by CPhill  Dec 5, 2015
edited by CPhill  Dec 5, 2015
#4
+10

Solve for x:
sin(5 x) = sin(3 x)

Take the inverse sine of both sides:
5 x = pi-3 x+2 pi n_1  for  n_1  element Z
or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Add 3 x to both sides:
8 x = pi+2 pi n_1  for  n_1  element Z
or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Divide both sides by 8:
x = pi/8+(pi n_1)/4  for  n_1  element Z
or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Subtract 3 x from both sides:
x = pi/8+(pi n_1)/4  for  n_1  element Z
or  2 x = 2 pi n_2  for  n_2  element Z

Divide both sides by 2:
| x = pi/8+(pi n_1)/4  for  n_1  element Z
or  x = pi n_2  for  n_2  element Z

Guest Dec 5, 2015
#5
+91411
+10

sin(5x) = sin(3x)

Thanks LambLamb CPhill and guest #4

I think this answer is probably very similar to  guest     #4

$$5x=3x+2\pi n\qquad or \qquad 5x=\pi-3x+2\pi n\\ 2x=2\pi n\qquad \qquad or \qquad 8x=\pi+2\pi n\\ x=\pi n\qquad \qquad \quad or \qquad x=\frac{\pi+2\pi n}{8}\qquad where\;\;n\in Z\\$$

Melody  Dec 5, 2015

### 18 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details