+0

Something Mathematical to do.

0
290
7
+676

Anyone think they can tackle this question?

Having a little bit of trouble.

TakahiroMaeda  May 2, 2017
edited by TakahiroMaeda  May 2, 2017
Sort:

#1
+5552
+4

hectictar  May 2, 2017
#3
+91231
+1

I love your illustrated thought process Hectictar :)

Melody  May 2, 2017
#4
+5552
+1

Haha thank you Melody!

I obviously didn't make this though! Just thought I'd clarify that

hectictar  May 2, 2017
#2
+91231
+2

I used this site:

https://goo.gl/Qem530

I haven't tried to make sense of it yet though.

Melody  May 2, 2017
#5
+18777
+4

Something Mathematical to do.

$$\begin{array}{llcl} \int \limits_{x=0}^{\infty} { \frac{1}{ (x+\sqrt{1+x^2})^2 } \ dx}\\\\ & \text{substitute:}\\ & \boxed{~ x=\tan(z) \\ dx = ( 1+\tan^2(z))\ dz \\ ~}\\ & \text{new limits:}\\ & \boxed{~ z=\arctan(0) \Rightarrow z = 0 \\ z=\arctan(\infty) \Rightarrow z = \frac{\pi}{2} \\\\ ~}\\ =\int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1+\tan^2(z)}{ \Big(\tan(z)+\sqrt{1+\tan^2(z)}\Big)^2 } \ dz} \\ & \boxed{~ 1+\tan^2(z) = \frac{1}{\cos^2(z)} \\ ~}\\ =\int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{\cos^2(z)}\cdot \left( \frac{1}{\frac{1}{\cos^2(z)}+ \tan^2(z)+2\cdot \frac{\sin(z)}{\cos^2(z)} } \right) \ dz} \\ = \int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{1+2\cdot \sin(z) + \sin^2(z) } \ dz} \\ = \int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{ \Big(1+\sin(z)\Big)^2 } \ dz} \\ & \text{substitute:}\\ & \boxed{~ t=\tan(\frac{z}{2}) \\ dt = \frac12 \cdot \left( 1+\tan^2(\frac{z}{2}) \right)\ dz\\ =\frac12 \cdot (1+t^2)\ dz \\ ~}\\ & \text{new limits:}\\ & \boxed{~ t=\tan(\frac{0}{2}) \Rightarrow t = 0 \\ t=\tan(\frac{ \frac{\pi}{2}}{2}) \Rightarrow t = 1 \\\\ ~}\\ = \int \limits_{t=0}^{1} \frac{2\ dt}{1+t^2} \cdot \left( \frac{1}{ \left(1+ \sin(z)\right)^2 } \right) \\ & \boxed{~ \sin(z) = \frac{2t}{1+t^2} \\ ~}\\ = \int \limits_{t=0}^{1} \frac{2\ dt}{1+t^2} \cdot \left( \frac{1}{ \left(1+ \frac{2t}{1+t^2}\right)^2 } \right) \\ = 2\cdot \int \limits_{t=0}^{1} \frac{1+t^2}{1+4t+6t^2+4t^3+t^4} \ dt\\ = 2\cdot \int \limits_{t=0}^{1} \frac{1+t^2}{(1+t)^4} \ dt\\ \end{array}$$

$$\begin{array}{llcl} & \text{Partial fraction decomposition:}\\ & \boxed{~ \begin{array}{lcll} & \frac{1+t^2}{(1+t)^4} &=& \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{C}{(1+t)^3} + \frac{D}{(1+t)^4} \\\\ & 1+t^2 &=& A\cdot (1+t)^3 +B\cdot (1+t)^2 +C\cdot (1+t) +D \\ (1)\quad t=-1 : & \Rightarrow 2 &=& D \\ (2)\quad t= 0 : & \Rightarrow -1 &=& A+B+C \\ (3)\quad t= 1 : & \Rightarrow 0 &=& 8A+4B+2C \quad | \quad : 2 \\ & 0 &=& 4A+2B+C \\ (4)\quad t= -2 : & \Rightarrow 3 &=& -A+B-C \\\\ (2)+(4) : & -1+3 &=& 2 B \qquad \Rightarrow B =1 \\ (3)+(4) : & 0+3 &=& 3A + 3B \quad | \quad : 3 \\ & 1 &=& A + B \quad | \quad B=1 \\ & 1 &=& A + 1 \qquad \Rightarrow A =0 \\ (2): & C &=& -1-A-B \\ & &=& -1-0-1 \qquad \Rightarrow C =-2 \\ \end{array} ~}\\ \end{array}$$

$$\begin{array}{llcl} = 2 \int \limits_{t=0}^{1} \left( \frac{1}{(1+t)^2} -2\cdot \frac{1}{(1+t)^3} +2\cdot \frac{1}{(1+t)^4 } \right) \ dt\\ = 2 \int \limits_{t=0}^{1} \frac{1}{(1+t)^2}\ dt -4 \int \limits_{t=0}^{1} \frac{1}{(1+t)^3}\ dt +4 \int \limits_{t=0}^{1} \frac{1}{(1+t)^4}\ dt \\ = 2 \left[ -\frac{1}{1+t} \right]_{t=0}^{1} -\frac{4}{2} \left[ -\frac{1}{(1+t)^2} \right]_{t=0}^{1} +\frac{4}{3} \left[ -\frac{1}{(1+t)^3} \right]_{t=0}^{1} \\ = 2 \left[ -\frac{1}{2} -(-1) \right] -\frac{4}{2} \left[ -\frac{1}{4}-(-1) \right] +\frac{4}{3} \left[-\frac{1}{8}-(-1) \right] \\ = 2 \left[ -\frac{1}{2} +1 \right] -2 \left[ -\frac{1}{4}+1 \right] +\frac{4}{3} \left[-\frac{1}{8}+1 \right] \\ = 2 \cdot \frac12 -2\cdot \frac34 +\frac43 \cdot \frac78 \\ = 1 - \frac32+ \frac76 \\ = \frac66 - \frac96 +\frac76 \\ = \frac{13}{6} - \frac96 \\ = \frac46 \\ = \frac23 \\ \end{array}$$

$$\begin{array}{llcl} \int \limits_{x=0}^{\infty} { \frac{1}{ (x+\sqrt{1+x^2})^2 } \ dx} = \frac23 \end{array}$$

heureka  May 2, 2017
#6
+91231
+2

Thanks Heureka,

I was wondering how this would be done.

I did think of substituting x=tan(z) but I didn't get very far with it.

Melody  May 2, 2017
#7
+18777
+2

Thanks Melody

heureka  May 3, 2017

17 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details