The sum is 1+11+111+1111+1111... find the sum of n
a1=1a2=11a3=111a4=1111…a1=1a2=1+101a3=1+101+102a4=1+101+102+103⋯an=1+101+102+103+104+⋯+10n−2+10n−1Sn=(n−0)⋅100+(n−1)⋅101+(n−2)⋅102+(n−3)⋅103+(n−4)⋅104+⋯+[n−(n−2)]⋅10n−2+[n−(n−1)]⋅10n−1Sn=n⋅1+n⋅101+n⋅102+n⋅104+⋯+n⋅10n−2+n⋅10n−1−0⋅100−1⋅101−2⋅102−3⋅103−4⋅104−⋯−(n−2)⋅10n−2−(n−1)⋅10n−1Sn=n⋅(1+101+102+104+⋯+10n−2+10n−1)⏟geometric series−n∑r=1(r−1)⋅10r−1⏟'Arithmetic-geometric' seriesSn=n⋅(10n−1−110−1)−n∑r=1(r−1)⋅10r−1Sn=n⋅(10n−1−110−1)−snsn=n∑r=1(r−1)⋅10r−1=0⋅100+1⋅101+2⋅102+3⋅103+4⋅104+⋯+(n−1)⋅10n−110⋅sn=0⋅101+1⋅102+2⋅103+3⋅104+⋯+(n−2)⋅10n−1+(n−1)⋅10nsn−10sn=1⋅101+1⋅102+1⋅103+⋯+1⋅10n−2+1⋅10n−1⏟geometric series−(n−1)⋅10n−9sn=10⋅(10n−1−110−1)−(n−1)⋅10n−9sn=10⋅(10n−1−19)−(n−1)⋅10n−sn=10⋅(10n−1−19⋅9)−(n−1)⋅10n9Sn=n⋅(10n−1−19)−sn Sn=n⋅(10n−1−19)+10⋅(10n−1−19⋅9)−(n−1)⋅10n9
The sum is 1+11+111+1111+1111... find the sum of n
a1=1a2=11a3=111a4=1111…a1=1a2=1+101a3=1+101+102a4=1+101+102+103⋯an=1+101+102+103+104+⋯+10n−2+10n−1Sn=(n−0)⋅100+(n−1)⋅101+(n−2)⋅102+(n−3)⋅103+(n−4)⋅104+⋯+[n−(n−2)]⋅10n−2+[n−(n−1)]⋅10n−1Sn=n⋅1+n⋅101+n⋅102+n⋅104+⋯+n⋅10n−2+n⋅10n−1−0⋅100−1⋅101−2⋅102−3⋅103−4⋅104−⋯−(n−2)⋅10n−2−(n−1)⋅10n−1Sn=n⋅(1+101+102+104+⋯+10n−2+10n−1)⏟geometric series−n∑r=1(r−1)⋅10r−1⏟'Arithmetic-geometric' seriesSn=n⋅(10n−1−110−1)−n∑r=1(r−1)⋅10r−1Sn=n⋅(10n−1−110−1)−snsn=n∑r=1(r−1)⋅10r−1=0⋅100+1⋅101+2⋅102+3⋅103+4⋅104+⋯+(n−1)⋅10n−110⋅sn=0⋅101+1⋅102+2⋅103+3⋅104+⋯+(n−2)⋅10n−1+(n−1)⋅10nsn−10sn=1⋅101+1⋅102+1⋅103+⋯+1⋅10n−2+1⋅10n−1⏟geometric series−(n−1)⋅10n−9sn=10⋅(10n−1−110−1)−(n−1)⋅10n−9sn=10⋅(10n−1−19)−(n−1)⋅10n−sn=10⋅(10n−1−19⋅9)−(n−1)⋅10n9Sn=n⋅(10n−1−19)−sn Sn=n⋅(10n−1−19)+10⋅(10n−1−19⋅9)−(n−1)⋅10n9
The sum is 1+11+111+1111+1111... find the sum of n
Sorry
New edit, without mistake:
a1=1a2=11a3=111a4=1111…a1=1a2=1+101a3=1+101+102a4=1+101+102+103⋯an=1+101+102+103+104+⋯+10n−2+10n−1Sn=(n−0)⋅100+(n−1)⋅101+(n−2)⋅102+(n−3)⋅103+(n−4)⋅104+⋯+[n−(n−2)]⋅10n−2+[n−(n−1)]⋅10n−1Sn=n⋅1+n⋅101+n⋅102+n⋅104+⋯+n⋅10n−2+n⋅10n−1−0⋅100−1⋅101−2⋅102−3⋅103−4⋅104−⋯−(n−2)⋅10n−2−(n−1)⋅10n−1Sn=n⋅(1+101+102+104+⋯+10n−2+10n−1)⏟geometric series−n∑r=1(r−1)⋅10r−1⏟'Arithmetic-geometric' seriesSn=n⋅(10n−110−1)−n∑r=1(r−1)⋅10r−1Sn=n⋅(10n−110−1)−snsn=n∑r=1(r−1)⋅10r−1=0⋅100+1⋅101+2⋅102+3⋅103+4⋅104+⋯+(n−1)⋅10n−110⋅sn=0⋅101+1⋅102+2⋅103+3⋅104+⋯+(n−2)⋅10n−1+(n−1)⋅10nsn−10sn=1⋅101+1⋅102+1⋅103+⋯+1⋅10n−2+1⋅10n−1⏟geometric series−(n−1)⋅10n−9sn=10⋅(10n−1−110−1)−(n−1)⋅10n−9sn=10⋅(10n−1−19)−(n−1)⋅10n−sn=10⋅(10n−1−19⋅9)−(n−1)⋅10n9Sn=n⋅(10n−19)−sn Sn=n⋅(10n−19)+10⋅(10n−1−19⋅9)−(n−1)⋅10n9or Sn=181⋅[ 10⋅(10n−1)−9n ]Example: S4=181⋅[ 10⋅(104−1)−9⋅4 ]S4=181⋅[ 10⋅(10000−1)−36 ]S4=181⋅[ 10⋅(9999)−36 ]S4=181⋅[ 99990−36 ]S4=181⋅[ 99954 ]S4=1234