+0

# Sum

0
321
8

The sum is 1+11+111+1111+1111... find the sum of n

Guest Nov 24, 2015

#7
+18712
+11

The sum is 1+11+111+1111+1111... find the sum of n

$$\small{ \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 11\\ a_3 &=& 111\\ a_4 &=& 1111\\ \dots \\ \end{array} \qquad \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 1 + 10^1\\ a_3 &=& 1 + 10^1+ 10^2\\ a_4 &=& 1 + 10^1+ 10^2+10^3\\ \cdots \\ a_n &=& 1 + 10^1+ 10^2+10^3+10^4+\cdots + 10^{n-2}+ 10^{n-1}\\ \end{array}\\\\ \begin{array}{rcl} \\ S_n &=& ( n - 0 )\cdot 10^0 +( n - 1 )\cdot 10^1 +( n - 2 )\cdot 10^2 +( n - 3 )\cdot 10^3 +( n - 4 )\cdot 10^4\\ & + & \cdots +[ n - (n-2) ]\cdot 10^{n-2} +[ n - (n-1) ]\cdot 10^{n-1}\\ S_n &=& n\cdot 1 + n\cdot 10^1 + n \cdot 10^2 + n\cdot 10^4 + \cdots + n \cdot 10^{n-2} + n \cdot 10^{n-1} \\ & -& 0\cdot 10^0 - 1 \cdot 10^1 - 2\cdot 10^2 - 3\cdot 10^3 - 4\cdot 10^4 -\cdots -(n-2)\cdot 10^{n-2} -(n-1)\cdot 10^{n-1}\\ S_n &=& n\cdot \underbrace{( 1 + 10^1 + 10^2 + 10^4 + \cdots + 10^{n-2} + 10^{n-1} )}_{\text{geometric series}} - \underbrace{\sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }}_{\text{'Arithmetic-geometric' series}}\\ S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right) - \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }\\\\ S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right) - s_n\\\\ \end{array}\\ \begin{array}{lclcl} \hline s_n = \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} } &=& 0\cdot 10^0 + &1& \cdot 10^1 + 2\cdot 10^2 + 3\cdot 10^3 +4\cdot 10^4 +\cdots + (n-1)\cdot 10^{n-1} \\ 10\cdot s_n &=& &0&\cdot 10^1+ 1\cdot 10^2 + 2\cdot 10^3 + 3\cdot 10^4 +\cdots + (n-2)\cdot 10^{n-1} + (n-1)\cdot 10^{n} \\ \hline \end{array}\\ \begin{array}{rcl} s_n- 10 s_n &=& \underbrace{1\cdot 10^1 + 1\cdot 10^2+1\cdot 10^3 +\cdots + 1\cdot 10^{n-2} + 1\cdot 10^{n-1}}_{\text{geometric series}} - (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right)- (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9} \right)- (n-1)\cdot 10^n \\\\ - s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\ \hline \end{array}\\ \begin{array}{rcl} S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{9} \right) - s_n\\\\ \end{array}\\\\ \begin{array}{rcl} \boxed{~ S_n = n\cdot \left( \dfrac{10^{n-1}-1}{9} \right) + 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\\\ ~} \end{array} }$$

heureka  Nov 24, 2015
Sort:

#1
+90988
+5

The sum would be infinity     :D

Melody  Nov 24, 2015
#2
+5

I meant find the sum of the equation, sorry

Guest Nov 24, 2015
#3
+90988
0

There is no equation.

You have to have an equal sign for an equation.

Melody  Nov 24, 2015
#4
+26322
+10

The n'th term is given by $$x_n=10x_{n-1}+n$$

See below for some results:

Alan  Nov 24, 2015
#5
+90988
0

Thanks Alan, I guess that is what was wanted......

Melody  Nov 24, 2015
#6
+26322
+5

Possibly.  Certainly it was the only way I could make sense of the question!

Alan  Nov 24, 2015
#7
+18712
+11

The sum is 1+11+111+1111+1111... find the sum of n

$$\small{ \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 11\\ a_3 &=& 111\\ a_4 &=& 1111\\ \dots \\ \end{array} \qquad \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 1 + 10^1\\ a_3 &=& 1 + 10^1+ 10^2\\ a_4 &=& 1 + 10^1+ 10^2+10^3\\ \cdots \\ a_n &=& 1 + 10^1+ 10^2+10^3+10^4+\cdots + 10^{n-2}+ 10^{n-1}\\ \end{array}\\\\ \begin{array}{rcl} \\ S_n &=& ( n - 0 )\cdot 10^0 +( n - 1 )\cdot 10^1 +( n - 2 )\cdot 10^2 +( n - 3 )\cdot 10^3 +( n - 4 )\cdot 10^4\\ & + & \cdots +[ n - (n-2) ]\cdot 10^{n-2} +[ n - (n-1) ]\cdot 10^{n-1}\\ S_n &=& n\cdot 1 + n\cdot 10^1 + n \cdot 10^2 + n\cdot 10^4 + \cdots + n \cdot 10^{n-2} + n \cdot 10^{n-1} \\ & -& 0\cdot 10^0 - 1 \cdot 10^1 - 2\cdot 10^2 - 3\cdot 10^3 - 4\cdot 10^4 -\cdots -(n-2)\cdot 10^{n-2} -(n-1)\cdot 10^{n-1}\\ S_n &=& n\cdot \underbrace{( 1 + 10^1 + 10^2 + 10^4 + \cdots + 10^{n-2} + 10^{n-1} )}_{\text{geometric series}} - \underbrace{\sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }}_{\text{'Arithmetic-geometric' series}}\\ S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right) - \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }\\\\ S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right) - s_n\\\\ \end{array}\\ \begin{array}{lclcl} \hline s_n = \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} } &=& 0\cdot 10^0 + &1& \cdot 10^1 + 2\cdot 10^2 + 3\cdot 10^3 +4\cdot 10^4 +\cdots + (n-1)\cdot 10^{n-1} \\ 10\cdot s_n &=& &0&\cdot 10^1+ 1\cdot 10^2 + 2\cdot 10^3 + 3\cdot 10^4 +\cdots + (n-2)\cdot 10^{n-1} + (n-1)\cdot 10^{n} \\ \hline \end{array}\\ \begin{array}{rcl} s_n- 10 s_n &=& \underbrace{1\cdot 10^1 + 1\cdot 10^2+1\cdot 10^3 +\cdots + 1\cdot 10^{n-2} + 1\cdot 10^{n-1}}_{\text{geometric series}} - (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right)- (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9} \right)- (n-1)\cdot 10^n \\\\ - s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\ \hline \end{array}\\ \begin{array}{rcl} S_n &=& n\cdot \left( \dfrac{10^{n-1}-1}{9} \right) - s_n\\\\ \end{array}\\\\ \begin{array}{rcl} \boxed{~ S_n = n\cdot \left( \dfrac{10^{n-1}-1}{9} \right) + 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\\\ ~} \end{array} }$$

heureka  Nov 24, 2015
#8
+18712
+10

The sum is 1+11+111+1111+1111... find the sum of n

Sorry

New edit, without mistake:

$$\small{ \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 11\\ a_3 &=& 111\\ a_4 &=& 1111\\ \dots \\ \end{array} \qquad \begin{array}{rcl} a_1 &=& 1 \\ a_2 &=& 1 + 10^1\\ a_3 &=& 1 + 10^1+ 10^2\\ a_4 &=& 1 + 10^1+ 10^2+10^3\\ \cdots \\ a_n &=& 1 + 10^1+ 10^2+10^3+10^4+\cdots + 10^{n-2}+ 10^{n-1}\\ \end{array}\\\\ \begin{array}{rcl} \\ S_n &=& ( n - 0 )\cdot 10^0 +( n - 1 )\cdot 10^1 +( n - 2 )\cdot 10^2 +( n - 3 )\cdot 10^3 +( n - 4 )\cdot 10^4\\ & + & \cdots +[ n - (n-2) ]\cdot 10^{n-2} +[ n - (n-1) ]\cdot 10^{n-1}\\ S_n &=& n\cdot 1 + n\cdot 10^1 + n \cdot 10^2 + n\cdot 10^4 + \cdots + n \cdot 10^{n-2} + n \cdot 10^{n-1} \\ & -& 0\cdot 10^0 - 1 \cdot 10^1 - 2\cdot 10^2 - 3\cdot 10^3 - 4\cdot 10^4 -\cdots -(n-2)\cdot 10^{n-2} -(n-1)\cdot 10^{n-1}\\ S_n &=& n\cdot \underbrace{( 1 + 10^1 + 10^2 + 10^4 + \cdots + 10^{n-2} + 10^{n-1} )}_{\text{geometric series}} - \underbrace{\sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }}_{\text{'Arithmetic-geometric' series}}\\ S_n &=& n\cdot \left( \dfrac{10^{n}-1}{10-1} \right) - \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} }\\\\ S_n &=& n\cdot \left( \dfrac{10^{n}-1}{10-1} \right) - s_n\\\\ \end{array}\\ \begin{array}{lclcl} \hline s_n = \sum \limits_{r=1}^{n} { (r-1)\cdot 10^{r-1} } &=& 0\cdot 10^0 + &1& \cdot 10^1 + 2\cdot 10^2 + 3\cdot 10^3 +4\cdot 10^4 +\cdots + (n-1)\cdot 10^{n-1} \\ 10\cdot s_n &=& &0&\cdot 10^1+ 1\cdot 10^2 + 2\cdot 10^3 + 3\cdot 10^4 +\cdots + (n-2)\cdot 10^{n-1} + (n-1)\cdot 10^{n} \\ \hline \end{array}\\ \begin{array}{rcl} s_n- 10 s_n &=& \underbrace{1\cdot 10^1 + 1\cdot 10^2+1\cdot 10^3 +\cdots + 1\cdot 10^{n-2} + 1\cdot 10^{n-1}}_{\text{geometric series}} - (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{10-1} \right)- (n-1)\cdot 10^n \\\\ -9 s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9} \right)- (n-1)\cdot 10^n \\\\ - s_n &=& 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\ \hline \end{array}\\ \begin{array}{rcl} S_n &=& n\cdot \left( \dfrac{10^{n}-1}{9} \right) - s_n\\\\ \end{array}\\\\ \begin{array}{rcl} \boxed{~ S_n = n\cdot \left( \dfrac{10^{n}-1}{9} \right) + 10\cdot \left( \dfrac{10^{n-1}-1}{9\cdot 9} \right)- \dfrac { (n-1)\cdot 10^n}{9} \\\\ \text{or }\quad S_n = \dfrac{1}{81}\cdot [~ 10\cdot (10^n - 1) - 9n ~]\\\\ \text{Example: } \\ \qquad S_4 = \dfrac{1}{81}\cdot [~ 10\cdot (10^4 - 1) - 9\cdot 4 ~]\\ \qquad S_4 = \dfrac{1}{81}\cdot [~ 10\cdot (10000 - 1) - 36 ~]\\ \qquad S_4 = \dfrac{1}{81}\cdot [~ 10\cdot (9999) - 36 ~]\\ \qquad S_4 = \dfrac{1}{81}\cdot [~ 99990 - 36 ~]\\ \qquad S_4 = \dfrac{1}{81}\cdot [~ 99954 ~]\\ \qquad S_4 = 1234 ~} \end{array} }$$

heureka  Nov 24, 2015

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details