+0  
 
0
1357
8
avatar

The sum is 1+11+111+1111+1111... find the sum of n

 Nov 24, 2015

Best Answer 

 #7
avatar+26396 
+11

The sum is 1+11+111+1111+1111... find the sum of n

 

a1=1a2=11a3=111a4=1111a1=1a2=1+101a3=1+101+102a4=1+101+102+103an=1+101+102+103+104++10n2+10n1Sn=(n0)100+(n1)101+(n2)102+(n3)103+(n4)104++[n(n2)]10n2+[n(n1)]10n1Sn=n1+n101+n102+n104++n10n2+n10n101001101210231034104(n2)10n2(n1)10n1Sn=n(1+101+102+104++10n2+10n1)geometric seriesnr=1(r1)10r1'Arithmetic-geometric' seriesSn=n(10n11101)nr=1(r1)10r1Sn=n(10n11101)snsn=nr=1(r1)10r1=0100+1101+2102+3103+4104++(n1)10n110sn=0101+1102+2103+3104++(n2)10n1+(n1)10nsn10sn=1101+1102+1103++110n2+110n1geometric series(n1)10n9sn=10(10n11101)(n1)10n9sn=10(10n119)(n1)10nsn=10(10n1199)(n1)10n9Sn=n(10n119)sn Sn=n(10n119)+10(10n1199)(n1)10n9 

 

laugh

 Nov 24, 2015
 #1
avatar+118696 
+5

The sum would be infinity     :D

 Nov 24, 2015
 #2
avatar
+5

I meant find the sum of the equation, sorry

 Nov 24, 2015
 #3
avatar+118696 
0

There is no equation.

You have to have an equal sign for an equation.     frown

 Nov 24, 2015
 #4
avatar+33654 
+10

The n'th term is given by xn=10xn1+n

 

See below for some results:

sum of terms

 Nov 24, 2015
 #5
avatar+118696 
0

Thanks Alan, I guess that is what was wanted......frown

 Nov 24, 2015
 #6
avatar+33654 
+5

Possibly.  Certainly it was the only way I could make sense of the question!

 Nov 24, 2015
 #7
avatar+26396 
+11
Best Answer

The sum is 1+11+111+1111+1111... find the sum of n

 

a1=1a2=11a3=111a4=1111a1=1a2=1+101a3=1+101+102a4=1+101+102+103an=1+101+102+103+104++10n2+10n1Sn=(n0)100+(n1)101+(n2)102+(n3)103+(n4)104++[n(n2)]10n2+[n(n1)]10n1Sn=n1+n101+n102+n104++n10n2+n10n101001101210231034104(n2)10n2(n1)10n1Sn=n(1+101+102+104++10n2+10n1)geometric seriesnr=1(r1)10r1'Arithmetic-geometric' seriesSn=n(10n11101)nr=1(r1)10r1Sn=n(10n11101)snsn=nr=1(r1)10r1=0100+1101+2102+3103+4104++(n1)10n110sn=0101+1102+2103+3104++(n2)10n1+(n1)10nsn10sn=1101+1102+1103++110n2+110n1geometric series(n1)10n9sn=10(10n11101)(n1)10n9sn=10(10n119)(n1)10nsn=10(10n1199)(n1)10n9Sn=n(10n119)sn Sn=n(10n119)+10(10n1199)(n1)10n9 

 

laugh

heureka Nov 24, 2015
 #8
avatar+26396 
+10

The sum is 1+11+111+1111+1111... find the sum of n

 

Sorry blush

New edit, without mistakelaugh:

 

 

a1=1a2=11a3=111a4=1111a1=1a2=1+101a3=1+101+102a4=1+101+102+103an=1+101+102+103+104++10n2+10n1Sn=(n0)100+(n1)101+(n2)102+(n3)103+(n4)104++[n(n2)]10n2+[n(n1)]10n1Sn=n1+n101+n102+n104++n10n2+n10n101001101210231034104(n2)10n2(n1)10n1Sn=n(1+101+102+104++10n2+10n1)geometric seriesnr=1(r1)10r1'Arithmetic-geometric' seriesSn=n(10n1101)nr=1(r1)10r1Sn=n(10n1101)snsn=nr=1(r1)10r1=0100+1101+2102+3103+4104++(n1)10n110sn=0101+1102+2103+3104++(n2)10n1+(n1)10nsn10sn=1101+1102+1103++110n2+110n1geometric series(n1)10n9sn=10(10n11101)(n1)10n9sn=10(10n119)(n1)10nsn=10(10n1199)(n1)10n9Sn=n(10n19)sn Sn=n(10n19)+10(10n1199)(n1)10n9or Sn=181[ 10(10n1)9n ]Example: S4=181[ 10(1041)94 ]S4=181[ 10(100001)36 ]S4=181[ 10(9999)36 ]S4=181[ 9999036 ]S4=181[ 99954 ]S4=1234 

 

laugh

 Nov 24, 2015

2 Online Users