+0  
 
0
540
4
avatar

Suppose that an object is at position s(t)=t^2 feet at time t seconds.

A.)Find the average velocity of the object over a time interval from time t seconds to time 2 seconds.

 

B.)Find the instantaneous velocity of the object at time 2 seconds by taking the limit of the average velocity in part A as t--> 2.

Guest Jan 30, 2016

Best Answer 

 #2
avatar+519 
+15

Now,I want to show you guys some physics and mathematics.

acceleration is the change in velocity in a given amount of time.\(a=\frac{V-Vo}{t}\)

where V is the final veocity and Vo is the initial velocity.

rearrange,we have \(V=at+Vo\)If the object's accelration is constant,then the graph of the velocity is a linear function.

But I would like to express it in y=mx+b form in my graph.And here is my graph

The area of the triangle is the sum of the  two base times the hight divide by two.or A=(b1+b2)*h/2

In here ,we could express it as \(A=(V+Vo)*\Delta t/2\)

the area under the curve(line) of function of velocity is the displacement.

Therefore,\(\Delta S=(V+Vo)*\Delta t/2\)\(a=\frac{V-Vo}{t}\Rightarrow t=\frac{V-Vo}{a}\)

If the object start moving at time 0 seconds 

\(\Delta t=T-To=t\)

the displacement of the object from time 0 seonds is \(\Delta S=\frac{V^2-Vo^2}{2a}\)

substitute V=at+Vo into \(\Delta S=(V+Vo)*\Delta t/2\)

we have \(\Delta S=(2Vo+at)*t/2\Rightarrow \Delta S=1/2at^2+Vo*t\)

displacement equal final position subract inital position \(\Delta S=S-So\)

\(S=\Delta S+So\)\(S=1/2at^2+Vo*t+So\)

Confirm my previous equation by using integration

\(V=\frac{ds}{dt}=a*t+Vo \Rightarrow \int \frac{ds}{dt}dt=\int at+Vo dt\Rightarrow S=1/2at^2+Vo*t+C\) for some costant C

In here C is the initial position,so \(S=1/2at^2+Vo*t+So\)

http://www.desmos.com/calculator/ibbxgibq5n (my original graph from demos)

wink

fiora  Jan 31, 2016
Sort: 

4+0 Answers

 #1
avatar+519 
+10

The instantaneous velocity is  the derivative of the position function s=f(t) with respect to time.At tiem t,the velocity is 

V(t)=\(\frac{ds}{dt}=\lim_{x\rightarrow \Delta t } \frac{S(t+\Delta t)-S(t)}{\Delta t} \)

(1)v(t)=\(\frac{ds}{dt} t^2=2t\)

(2)\(\lim_{t\rightarrow 2} 2t=2*2=4\)

not good at calculus,might be wrong

fiora  Jan 30, 2016
 #2
avatar+519 
+15
Best Answer

Now,I want to show you guys some physics and mathematics.

acceleration is the change in velocity in a given amount of time.\(a=\frac{V-Vo}{t}\)

where V is the final veocity and Vo is the initial velocity.

rearrange,we have \(V=at+Vo\)If the object's accelration is constant,then the graph of the velocity is a linear function.

But I would like to express it in y=mx+b form in my graph.And here is my graph

The area of the triangle is the sum of the  two base times the hight divide by two.or A=(b1+b2)*h/2

In here ,we could express it as \(A=(V+Vo)*\Delta t/2\)

the area under the curve(line) of function of velocity is the displacement.

Therefore,\(\Delta S=(V+Vo)*\Delta t/2\)\(a=\frac{V-Vo}{t}\Rightarrow t=\frac{V-Vo}{a}\)

If the object start moving at time 0 seconds 

\(\Delta t=T-To=t\)

the displacement of the object from time 0 seonds is \(\Delta S=\frac{V^2-Vo^2}{2a}\)

substitute V=at+Vo into \(\Delta S=(V+Vo)*\Delta t/2\)

we have \(\Delta S=(2Vo+at)*t/2\Rightarrow \Delta S=1/2at^2+Vo*t\)

displacement equal final position subract inital position \(\Delta S=S-So\)

\(S=\Delta S+So\)\(S=1/2at^2+Vo*t+So\)

Confirm my previous equation by using integration

\(V=\frac{ds}{dt}=a*t+Vo \Rightarrow \int \frac{ds}{dt}dt=\int at+Vo dt\Rightarrow S=1/2at^2+Vo*t+C\) for some costant C

In here C is the initial position,so \(S=1/2at^2+Vo*t+So\)

http://www.desmos.com/calculator/ibbxgibq5n (my original graph from demos)

wink

fiora  Jan 31, 2016
 #3
avatar+519 
+5
fiora  Jan 31, 2016
edited by fiora  Jan 31, 2016
edited by fiora  Jan 31, 2016
 #4
avatar+91024 
0

Thanks fiora for your marvelously detailed answer :)

 

I think you should give yourself some points !

 

I have put your answer aside.  I would like to think about it some more.   ://

Melody  Jan 31, 2016
edited by Melody  Jan 31, 2016

26 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details