+0  
 
0
39
5
avatar+257 

The function f(x) = ax^r satisfies f(2) = 1 and f(32) = 4. Find r.

 

 

Thanks dudes!

Sort: 

5+0 Answers

 #1
avatar+350 
+1

im just going to accept that i am dumb

edited by OfficialBubbleTanks  Dec 1, 2017
 #2
avatar+257 
0

What if the solution was a fraction?

 #3
avatar+350 
0

do you want hundreds of decimal places?

 #4
avatar+5555 
+1

f(x)  =  ax^r

 

f(2)  =  1

a(2)^r  =  1                  Divide both sides by  2^r .

a  =  1 / ( 2^r)

 

f(32)  =  4

a(32)^r  =  4              Divide both sides by  32^r .

a  =  4 / ( 32^r)

 

Set these two values of  a  equal to each other.

 

1 / ( 2^r)  =  4 / (32^r)         Cross multiply.

32^r  =  4 * 2^r                   And we can write  32  and  4  as powers of  2 .

(2^5)^r  =  2^2 * 2^r

2^(5r)  =  2^(2 + r)

5r  =  2 + r

4r  =  2

r  =  1/2

hectictar  Dec 1, 2017
 #5
avatar+257 
+1

Thanks!


6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details