+0

the graph of y = sin x and the line y = (-1)/2 over the interval [0^@, 360^@]. Where do the two graphs intersect? Give exact answers in degr

0
293
2

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

Guest May 20, 2015

#1
+18827
+10

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

$$\small{\text{ \begin{array}{rcl|rcl}\sin{(x_1)} &=& -\frac12 \qquad & \qquad \sin{(x_1)} &=& \sin{ (180\ensurement{^{\circ}} -x_2) } =-\frac12 \\&&&\\ x_1 &=& \arcsin{( -\frac12 )} \qquad & \qquad \sin{ (180\ensurement{^{\circ}} - x_2) } &=&-\frac12 \\&&&\\x_1 &=& -30\ensurement{^{\circ}} + 360\ensurement{^{\circ}} =330\ensurement{^{\circ}} \qquad & \qquad 180\ensurement{^{\circ}} - x_2 &=& \arcsin(-\frac12) \\&&&\\&& &\qquad x_2 &=& 180\ensurement{^{\circ}}-\arcsin{( -\frac12 )} \\&&&\\&&\qquad & x_2 &=& 180\ensurement{^{\circ}} +30\ensurement{^{\circ}} \\&&&\\&&\qquad & x_2 &=& 210\ensurement{^{\circ}}\\\end{array}}}$$

heureka  May 20, 2015
Sort:

#1
+18827
+10

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

$$\small{\text{ \begin{array}{rcl|rcl}\sin{(x_1)} &=& -\frac12 \qquad & \qquad \sin{(x_1)} &=& \sin{ (180\ensurement{^{\circ}} -x_2) } =-\frac12 \\&&&\\ x_1 &=& \arcsin{( -\frac12 )} \qquad & \qquad \sin{ (180\ensurement{^{\circ}} - x_2) } &=&-\frac12 \\&&&\\x_1 &=& -30\ensurement{^{\circ}} + 360\ensurement{^{\circ}} =330\ensurement{^{\circ}} \qquad & \qquad 180\ensurement{^{\circ}} - x_2 &=& \arcsin(-\frac12) \\&&&\\&& &\qquad x_2 &=& 180\ensurement{^{\circ}}-\arcsin{( -\frac12 )} \\&&&\\&&\qquad & x_2 &=& 180\ensurement{^{\circ}} +30\ensurement{^{\circ}} \\&&&\\&&\qquad & x_2 &=& 210\ensurement{^{\circ}}\\\end{array}}}$$

heureka  May 20, 2015
#2
+91409
+5

Thanks Heureka,

Here is the graphical solution

https://www.desmos.com/calculator/p5ia0okfnz

Melody  May 20, 2015

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details