+0

# The values of the four variables $a$, $b$, $c$, and $d$ are 9, 11, 13, and 15, though not necessarily in that order. What is the number of p

+1
58
4
+417

The values of the four variables $a$, $b$, $c$, and $d$ are 9, 11, 13, and 15, though not necessarily in that order. What is the number of possible values of the expression $ab+bc+cd+da$?

Edit: I got 24, but I want to comfirm

michaelcai  Nov 7, 2017
edited by michaelcai  Nov 7, 2017
Sort:

#1
0

It should be 4! = 24 values.

Guest Nov 7, 2017
#2
+417
0

michaelcai  Nov 7, 2017
#3
+18715
+1

The values of the four variables a, b, c, and d are 9, 11, 13, and 15, though not necessarily in that order.

What is the number of possible values of the expression ab+bc+cd+da?

Let a = 9
Let b = 11
Let c = 13
Let d = 15

$$\small{ \begin{array}{|r|c|r|r|r|r|rcl|} \hline & \text{All permutations} & & & & & \\ & \text{of a,b,c,d} & A & B & C & D & AB+BC+CD+DA &=& (B+D)(A+C) \\ \hline 1. & abcd & 9 & 11 & 13 & 15 & (11+15)(9+13) = 26*22 &=& 572 \\ 2. & abdc & 9 & 11 & 15 & 13 & (11+13)(9+15) = 24*24 &=& \qquad 576 \\ 3. & acbd & 9 & 13 & 11 & 15 & (13+15)(9+11) = 28*20 &=& \qquad \qquad 560 \\ 4. & acdb & 9 & 13 & 15 & 11 & (13+11)(9+15) = 24*24 &=& \qquad 576 \\ 5. & adcb & 9 & 15 & 13 & 11 & (15+11)(9+13) = 26*22 &=& 572 \\ 6. & adbc & 9 & 15 & 11 & 13 & (15+13)(9+11) = 28*20 &=& \qquad \qquad 560 \\ 7. & bacd & 11 & 9 & 13 & 15 & (9+15)(11+13) = 24*24 &=& \qquad 576 \\ 8. & badc & 11 & 9 & 15 & 13 & (9+13)(11+15) = 22*26 &=& 572 \\ 9. & bcad & 11 & 13 & 9 & 15 & (13+15)(11+9) = 28*20 &=& \qquad \qquad 560 \\ 10. & bcda & 11 & 13 & 15 & 9 & (13+9)(11+15) = 22*26 &=& 572 \\ 11. & bdca & 11 & 15 & 13 & 9 & (15+9)(11+13) = 24*24 &=& \qquad 576 \\ 12. & bdac & 11 & 15 & 9 & 13 & (15+13)(11+9) = 28*20 &=& \qquad \qquad 560 \\ 13. & cbad & 13 & 11 & 9 & 15 & (11+15)(13+9) = 26*22 &=& 572 \\ 14. & cbda & 13 & 11 & 15 & 9 & (11+9)(13+15) = 20*28 &=& \qquad \qquad 560 \\ 15. & cabd & 13 & 9 & 11 & 15 & (9+15)(13+11) = 24*24 &=& \qquad 576 \\ 16. & cadb & 13 & 9 & 15 & 11 & (9+11)(13+15) = 20*28 &=& \qquad \qquad 560 \\ 17. & cdab & 13 & 15 & 9 & 11 & (15+11)(13+9) = 26*22 &=& 572 \\ 18. & cdba & 13 & 15 & 11 & 9 & (15+9)(13+11) = 24*24 &=& \qquad 576 \\ 19. & dbca & 15 & 11 & 13 & 9 & (11+9)(15+13) = 20*28 &=& \qquad \qquad 560 \\ 20. & dbac & 15 & 11 & 9 & 13 & (11+13)(15+9) = 24*24 &=& \qquad 576 \\ 21. & dcba & 15 & 13 & 11 & 9 & (13+9)(15+11) = 22*26 &=& 572 \\ 22. & dcab & 15 & 13 & 9 & 11 & (13+11)(15+9) = 24*24 &=& \qquad 576 \\ 23. & dacb & 15 & 9 & 13 & 11 & (9+11)(15+13) = 20*28 &=& \qquad \qquad 560 \\ 24. & dabc & 15 & 9 & 11 & 13 & (9+13)(15+11) = 22*26 &=& 572 \\ \hline \end{array} }$$

The number of possible values of the expression ab+bc+cd+da=(b+d)(a+c) is 3

The values are 560, 572, and 576

heureka  Nov 7, 2017
edited by heureka  Nov 7, 2017

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details