Processing math: 100%
 
+0  
 
0
7803
2
avatar

Use Newton's method to find the absolute maximum value of the function f(x) = 2x sin x, 0 ≤ x ≤ π correct to six decimal places.

 

help...

 Nov 6, 2015
edited by Guest  Nov 6, 2015

Best Answer 

 #1
avatar+33654 
+10

Here's how to do it:

 

Newton's method

 Nov 6, 2015
 #1
avatar+33654 
+10
Best Answer

Here's how to do it:

 

Newton's method

Alan Nov 6, 2015
 #2
avatar+118703 
+5

 

I know this question is old but I wanted to look at it and this is the first chance I have had.

Alan has given a great answer but I wanted to do it without using a computer graphing program to help me.

(I did cheat and use some of Alan's results but that was just to save the necessity of number crunching)

 

 

f(x)=2xsinx0xπf(x)=2(sinx+xcosx)f(x)=2(cosx+cosxxsinx)=4cosx2xsinxNow turning points will occur when f'(x)=02(sinx+xcosx)=0sinx+xcosx=0xcosx=sinxx=tanxNow if I plot y=x and y=tanx then the point of intersection will be where this is true.I can do a rough graph of this without the help of any graphing calculators..I can see that the point of intersection is between x=π/2andx=πSo like Alan said x=2 is a good first estimate.

 

 

Now you use Newton's method to get closer and closer approximations.

I can never remember the formula so I have to derive it each time but with a little practice this is easy to do.

 

anyway, it is

x1=x0f(x0)f(x0)Wherex0is the first estimate and x1 is the next estimate

 

This is tedious but it can certainly be done by hand.   (you only need to do it 3 times.)

Anyway, Alan got the answer x=2.0288158.

 

Now you do need to ascertain what kind of a stationary point this is 

so you need to plug this valu of x into the second derivative.

It will give you   f''(2.0288158) < 0 

I have not done it because I cannot be bothered but I know this is true because Alan has kinly plotted f(x)for me and I can see that the concavity of the curve at the stat point is negative.

 

There you go.  That is how you do it without the need of graph aids.

 

I have graphed it just to help you understand what I was tallking about.  

I did graph it too but only roughly with a pen and paper.

 

https://www.desmos.com/calculator/3z64adpobn

 

 

 Nov 11, 2015

3 Online Users

avatar
avatar