+0

# Working together

0
170
3

If A and B working together can finish a task in 1 1/2 hours, and if A and C working together can finish the same task in 1 2/3 hours, and if A, B, and C working together can finish the same task in 1 hour, how long would it take for B and C working together to finish the same task? Thank you.

Guest Aug 25, 2017
Sort:

#1
+80935
+2

Let  the part of the job that A can do in one hour  = A

Let the part of the job that B can do in one hour  = B

And let the part of the job that C can do in one hour  = C

And using....... rate per hour * hrs. worked = part of the job done......

we  have this system of equations

[ Note....1.5 hrs = 3/2 hrs and 1 + 2/3 hrs  = 5/3 hrs  ]

(A) (3/2) + (B)(3/2)  = 1  →  3A + 3B  = 2   → B =  [2 - 3A] / 3    ( 1)

(A)(5/3) + (C)((5/3)  = 1  →  5A + 5C  = 3 → C =  [3 - 5A ] / 5     (2)

A + B + C  =  1               → A + B + C  = 1    (3)

Subbing (1) and (2)  into (3)...we have that

A + [2 - 3A]/3 + [3 - 5A]/5  = 1      multiply through by 15

15A  + 5[ 2 - 3A] + 3[ 3 - 5A] = 15    simplify

15A + 10 - 15A + 9 - 15A  = 15

-15A  + 19 = 15

-15A = -4    divide both sides by -15

A  = 4/15   ...so A can complete 4/15 of the job in one hour

B  completes  .... [2 - 3(4/15)] / 3  =  [ 30 -12] / 45  = 18/45  = 2/5  of the job in one hour

C  completes ...  [ 3 - 5(4/15)] / 5  = [ 45 - 20] / 75 = 25/75  =1/3 of the job in one hoiur

So....B and C working together complete    2/5 + 1/3  = [6 + 5] / 15  =

11/15  of the job in one hour

Flip this fraction over to find the total time it takes B + C working together to finish the whole job  =

15/11 hrs ≈  81.81 minutes  ≈ 1 hr, 21minutes,48.6 seconds

CPhill  Aug 25, 2017
edited by CPhill  Aug 25, 2017
#2
+18827
+2

If A and B working together can finish a task in 1 1/2 hours,
and if A and C working together can finish the same task in 1 2/3 hours,
and if A, B, and C working together can finish the same task in 1 hour,
how long would it take for B and C working together to finish the same task?

Let W = Work

$$\begin{array}{|rcll|} \hline \frac{W}{A} &+& \frac{W}{B} && &=& \frac{W}{1\frac12\ h} \quad & | \quad : W \\ \frac{W}{A} & & &+& \frac{W}{C} &=& \frac{W}{1\frac23\ h} \quad & | \quad : W \\ \frac{W}{A} &+& \frac{W}{B} &+& \frac{W}{C} &=& \frac{W}{1\ h} \quad & | \quad : W \\ & & \frac{W}{B} &+& \frac{W}{C} &=& \frac{W}{x} \quad & | \quad : W \\\\ \frac{1}{A} &+& \frac{1}{B} && &=& \frac{1}{1+\frac12} & (1) \\ \frac{1}{A} & & &+& \frac{1}{C} &=& \frac{1}{1+\frac23} & (2) \\ \frac{1}{A} &+& \frac{1}{B} &+& \frac{1}{C} &=& \frac{1}{1} & (3) \\ & & \frac{1}{B} &+& \frac{1}{C} &=& \frac{1}{x} & (4) \\ \hline \end{array}$$

$$\frac{1}{A} =\ ?$$

$$\small{ \begin{array}{|lrcll|} \hline (1)+(2)-(3): \\\\ & (\frac{1}{A}+\frac{1}{B}) + (\frac{1}{A}+\frac{1}{C})-(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}) &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A}+\frac{1}{B} + \frac{1}{A}+\frac{1}{C}-\frac{1}{A}-\frac{1}{B}-\frac{1}{C} &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A} &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A} &=& \frac{1}{\frac32} + \frac{1}{\frac53} - 1 \\ & \frac{1}{A} &=& \frac23 + \frac{3}{5} - 1 \\ & \frac{1}{A} &=& \frac{10+9}{15} - 1 \\ & \frac{1}{A} &=& \frac{19}{15} - \frac{15}{15} \\ & \mathbf{\frac{1}{A}} & \mathbf{=} & \mathbf{\frac{4}{15}} \\ \hline \end{array} }$$

$$x =\ ?$$

$$\begin{array}{|lrcll|} \hline (3) & \frac{1}{A} + \frac{1}{B} + \frac{1}{C} &=& \frac{1}{1} \\ & \frac{1}{B} + \frac{1}{C} &=& \frac{1}{1} - \frac{1}{A} \quad & | \quad \frac{1}{B} + \frac{1}{C} = \frac{1}{x} \\ & \frac{1}{x} &=& \frac{1}{1} - \frac{1}{A} \\ & \frac{1}{x} &=& \frac{1}{1} - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& 1 - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& \frac{15}{15} - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& \frac{15-4}{15} \\ & \frac{1}{x} &=& \frac{11}{15} \\ & x &=& \frac{15}{11} \\ & \mathbf{x} & \mathbf{=}& \mathbf{1\frac{4}{11}\ h} \\ \hline \end{array}$$

It would take for B and C working together to finish the same task $$\mathbf{1\frac{4}{11}\ h}$$

heureka  Aug 25, 2017
edited by heureka  Aug 25, 2017
#3
+1

1/a + 1/b = 2/3.......................(1)
1/a + 1/c = 3/5....................... (2)
1/a + 1/b + 1/c = 1..................(3) subbing 1 into 3 we get:
2/3 + 1/c = 1, and c =3 and subbing 2 into 3 we get:
3/5 + 1/b = 1, and b =5/2. adding the reciprocals of b, and c we have:
1/3 + 2/5 = 11/15, and the reciprocal of this is:
15/11 = 1 4/11 hours for B and C to finish the job.

Guest Aug 25, 2017
edited by Guest  Aug 25, 2017

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details