We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

#1**+2 **

\(f(x) = x^4 - x^3 - 2x - 4 \\ \text{I like to quickly check for rational roots before getting fancy}\\ \text{possible roots here are }x = \pm 1, \pm 2, \pm 4 \\ \text{and a quick check shows that }x=-1,~2 \text{ are actual roots}\\ \text{we can then do the polynomial division to find that}\\ f(x) = (x+1)(x-2)(x^2+2)\\ \text{and complete the factoring as}\\ f(x) = (x+1)(x-2)(x+i\sqrt{2})(x - i \sqrt{2})\)

Another way of approaching this is to see if you get lucky when factoring pieces of it.

\(x^4 - x^3-2x-4 = \\ (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2)-x(x^2+2) = \\ (x^2 +2)(x^2 - x-2) =\\ (x^2+2)(x-2)(x+1) = \\ (x+i\sqrt{2})(x-i\sqrt{2})(x-2)(x+1)\\ \text{which is the same as the first answer with the factors listed in different orders}\)

The second method is certainly faster if you get lucky.

Rom Nov 1, 2018

#1**+2 **

Best Answer

\(f(x) = x^4 - x^3 - 2x - 4 \\ \text{I like to quickly check for rational roots before getting fancy}\\ \text{possible roots here are }x = \pm 1, \pm 2, \pm 4 \\ \text{and a quick check shows that }x=-1,~2 \text{ are actual roots}\\ \text{we can then do the polynomial division to find that}\\ f(x) = (x+1)(x-2)(x^2+2)\\ \text{and complete the factoring as}\\ f(x) = (x+1)(x-2)(x+i\sqrt{2})(x - i \sqrt{2})\)

Another way of approaching this is to see if you get lucky when factoring pieces of it.

\(x^4 - x^3-2x-4 = \\ (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2)-x(x^2+2) = \\ (x^2 +2)(x^2 - x-2) =\\ (x^2+2)(x-2)(x+1) = \\ (x+i\sqrt{2})(x-i\sqrt{2})(x-2)(x+1)\\ \text{which is the same as the first answer with the factors listed in different orders}\)

The second method is certainly faster if you get lucky.

Rom Nov 1, 2018