We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
244
2
avatar+189 

 

 

Factor the polynomial function over the complex numbers

f(x)=x^4−x^3−2x−4

 Nov 1, 2018

Best Answer 

 #1
avatar+5091 
+2

\(f(x) = x^4 - x^3 - 2x - 4 \\ \text{I like to quickly check for rational roots before getting fancy}\\ \text{possible roots here are }x = \pm 1, \pm 2, \pm 4 \\ \text{and a quick check shows that }x=-1,~2 \text{ are actual roots}\\ \text{we can then do the polynomial division to find that}\\ f(x) = (x+1)(x-2)(x^2+2)\\ \text{and complete the factoring as}\\ f(x) = (x+1)(x-2)(x+i\sqrt{2})(x - i \sqrt{2})\)

 

Another way of approaching this is to see if you get lucky when factoring pieces of it.

 

\(x^4 - x^3-2x-4 = \\ (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2)-x(x^2+2) = \\ (x^2 +2)(x^2 - x-2) =\\ (x^2+2)(x-2)(x+1) = \\ (x+i\sqrt{2})(x-i\sqrt{2})(x-2)(x+1)\\ \text{which is the same as the first answer with the factors listed in different orders}\)

 

The second method is certainly faster if you get lucky.

 Nov 1, 2018
 #1
avatar+5091 
+2
Best Answer

\(f(x) = x^4 - x^3 - 2x - 4 \\ \text{I like to quickly check for rational roots before getting fancy}\\ \text{possible roots here are }x = \pm 1, \pm 2, \pm 4 \\ \text{and a quick check shows that }x=-1,~2 \text{ are actual roots}\\ \text{we can then do the polynomial division to find that}\\ f(x) = (x+1)(x-2)(x^2+2)\\ \text{and complete the factoring as}\\ f(x) = (x+1)(x-2)(x+i\sqrt{2})(x - i \sqrt{2})\)

 

Another way of approaching this is to see if you get lucky when factoring pieces of it.

 

\(x^4 - x^3-2x-4 = \\ (x^4-4)-(x^3+2x) = \\ (x^2-2)(x^2+2)-x(x^2+2) = \\ (x^2 +2)(x^2 - x-2) =\\ (x^2+2)(x-2)(x+1) = \\ (x+i\sqrt{2})(x-i\sqrt{2})(x-2)(x+1)\\ \text{which is the same as the first answer with the factors listed in different orders}\)

 

The second method is certainly faster if you get lucky.

Rom Nov 1, 2018
 #2
avatar+189 
0

thank you

skye25  Nov 1, 2018

7 Online Users

avatar