+0  
 
0
126
1
avatar+946 

The vectors and  have the same magnitude. The angle between the vectors is 125°, and the magnitude of their cross product is  20. What is 

 

a) 4.08 

b) 4.94 

c) 16.4 

d) 24.4

Julius  May 23, 2018
 #1
avatar+19835 
+1

The vectors

\(\vec{a} \)  \vec{a}

and

\(\vec{b} \)  \vec{b}

have the same magnitude.

The angle between the vectors is 125\(^{\circ}\) ^{\circ},

and the magnitude of their cross product is  20.

I assume what is  a ? 

 

\(\begin{array}{|rcll|} \hline |\vec{a}\times \vec{b}| = 20 &=& a\cdot b \cdot \sin{(125^{\circ})} \quad & | \quad a =b \\ 20 &=& a\cdot a \cdot \sin{(125^{\circ})} \\ a\cdot a \cdot \sin{(125^{\circ})} &=& 20 \\ a^2\cdot \sin{125^{\circ}} &=& 20 \\ a^2 &=& \dfrac{20}{\sin{(125^{\circ})}} \\ a &=& \sqrt{\dfrac{20}{\sin{(125^{\circ})}}} \\ a &=& \sqrt{\dfrac{20}{0.81915204429}} \\ a &=& \sqrt{24.4154917752} \\ \mathbf{ a } & \mathbf{=} & \mathbf{4.94120347438} \\ \hline \end{array}\)

 

laugh

heureka  May 24, 2018

3 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.