Questions   
Sort: 
 #2
avatar+171 
+1
Jul 30, 2017
Jul 29, 2017
 #1
avatar+2442 
+3

Ok, after some problem solving I have finally figured out the answer! The answer was right in front of me, too!

 

I will attempt to make a diagram, but I cannot guarantee that it will be clear.

           

 

   C        A                                                                      D

    ----------------------------------------------------------------------

   |                                                                                  | 

H |                                                                                  |

   |                                                                                  |
   |                                                                                  |

   |                                                                                  |

   |                                                                                  |

   |                                                                                  |
   |                                                                                  |

   |                                                                                  |

   |                                                                                  | G

   |                                                                                  |
   ----------------------------------------------------------------------

  F                                                                          B     E

 

Ok, this is a diagram, and I have labeled the corners with letters so that it is clearer for you to understand!

 

If AB=12, that is the diagonal of the inner rectangle. Notice that AG=BH and BG=AH. We know that this by the properties of a rectangle; opposite sides of a rectangle are congruent. If all the triangles are right and isosceles, then we know that \(\triangle AGD \cong \triangle BHF\hspace{1mm}\text{and}\hspace{1mm}\triangle ACH \cong \triangle BEG\) because of angle-side-angle congruence theorem.

 

Let's remind ourselves, too, that these are, by the given information, right isosceles. This means that \(AD=DG=HF=FB\hspace{1mm}\text{and}\hspace{1mm}AC=CH=BE=EG\).

 

Let's label all the sides congruent to AD x and all sides congruent to AC y.

 

Let's find the length of the triangles' hypotenuses. Of course, we already know that \(AG=BH\hspace{1mm}\text{and}\hspace{1mm} BG=AH\), so we only need to calculate half of the diagonals. These are easier than they first appear, actually. A right isosceles triangle is 45-45-90 triangle, so the hypotenuses is the length of the leg times the square root of 2. Using this logic, \(AG=BH=x\sqrt{2}\hspace{1mm}\text{and}\hspace{1mm} BG=AH=y\sqrt{2}\).

 

Now that we have determined the lengths of the hypotenuses of the triangle. We can utilize the Pythagorean theorem, \(a^2+b^2=c^2\)

.

 

\((x\sqrt{2})^2+(y\sqrt{2})^2=12^2\) "Distribute" the square to all parts of the terms.
\(x^2*\sqrt{2}^2+y^2*\sqrt{2}^2=12^2\) Simplify as much as possible.
\(x^2*2+y^2*2=144\)  
\(2x^2+2y^2=144\) Divide by the GCF of all the terms, 2. You will see the significance of this shortly. 
\(x^2+y^2=72\)  
   

 

We are amazing close to the answer. To know the answer for sure, we must recognize something, first...

 

Well, let's find the area of all the triangles.

 

  \(\triangle ADG\) \(\triangle GEB\) \(\triangle BFH\) \(\triangle HCA\)
  \(A=\frac{1}{2}*x*x\) \(A=\frac{1}{2}*y*y\) \(A=\frac{1}{2}*x*x\) \(A=\frac{1}{2}*y*y\)
  \(A=\frac{1}{2}x^2\) \(A=\frac{1}{2}y^2\) \(A=\frac{1}{2}x^2\) \(A=\frac{1}{2}y^2\)
         

 

 

Add these areas together and see what you get.

 

\(\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}x^2+\frac{1}{2}y^2\) Add the combined areas of the triangles. Combine like terms.
\(x^2+y^2\) We have determined that the combined areas of the triangles are x^2+y^2
   

 

Do you see the significance of this? I do. We had determined in the previous calculation that \(x^2+y^2=72units^2\). Oh look! That's our answer! The combined area of all the triangles is \(72units^2\)

 

I sincerely hoped this helped you out.

Jul 29, 2017
 #1
avatar
0
Jul 29, 2017
 #2
avatar+118616 
+3
Jul 29, 2017
 #1
avatar+9468 
+3

Your derivative is correct...here are the steps...

 

\(\begin{array}\ y&=&x^{\frac12} \cdot(3-x)^2 \\ \frac{dy}{dx}&=&(\frac{d}{dx} x^{\frac12})(3-x)^2+(\,\frac{d}{dx}(3-x)^2\,)(x^{\frac12}) \\ \frac{dy}{dx}&=&(\frac12)(x^{-\frac12})(3-x)^2+(2)(3-x)(\,\frac{d}{dx}(3-x)\,)(x^{\frac12}) \\ \frac{dy}{dx}&=&(\frac12)(x^{-\frac12})(3-x)^2+(2)(3-x)(-1)(x^{\frac12}) \\ \frac{dy}{dx}&=&(3-x)(\quad(\frac12)(x^{-\frac12})(3-x)+(2)(-1)(x^{\frac12})\quad) \\ \frac{dy}{dx}&=&(3-x)(\frac12)(\quad(x^{-\frac12})(3-x)-4x^{\frac12}\quad) \\ \frac{dy}{dx}&=&(3-x)(\frac12)(x^{-\frac12})(\quad(3-x)-4x\quad) \\ \frac{dy}{dx}&=&(3-x)(\frac12)(x^{-\frac12})(3-5x) \end{array}\)

 

The above equation tells us what the slope of this curve is at any  x  .

 

Where the tangent line is horizontal, the  slope  of the curve  =  0 .

Where the tangent line is horizontal, the  dy/dx  of the curve  =  0  .

 

We want to know what values for  x  cause  dy/dx  to be  0  .

 

\(0\,=\,(3-x)(\frac12)(x^{-\frac12})(3-5x) \)

 

Set the first and fourth factors equal to zero and solve for  x .

 

0  =  3 - x                   0    =   3 - 5x

x  =  3                        5x  =   3

                                  x    =   3/5

 

You're right that the minumum is a point where the tangent line is horizontal...but the maximum is also a point where the tangent line is horizontal. smiley

Jul 29, 2017

5 Online Users

avatar
avatar