Questions   
Sort: 
 #2
avatar+893 
+1

I think that the answer is 19C5*14C5*9C3*6C3, whatever that works out to be.

This business of dividing by 2 and 3! when you have one group of five then the other group of five is determined, or for the groups of three it doesn't matter in what order they are chosen, is wrong.

There is a difference between splitting the 19 into two groups of five and three groups of three without distinction, and splitting them into groups where each group studies a different topic.

Consider, for example, a group of four students, call them A,B,C and D, split into two twos.

4C2 = 6, so we have 6 pairs, AB, AC, AD, BC, BD, CD.

However, when the first pairing is chosen, in effect the second pairing is also chosen, so we have just three (= 6/2) possible groupings, {AB, CD}, {AC, BD} and {AD, BC}. That's the situation if it doesn't matter which pairing comes first, that is, for example, {AB, CD} is the same as {CD, AB}.

Now suppose that the students are going into two different language classes, say the first pairing study French and the second pairing study German. Now, the order of the pairings makes a difference, {AB, CD} is different from {CD, AB}.

In the first case, A and B study French and in the second case they study German, (and the other way round for C and D).

If this is the situation, the original calculation of 4C2 = 6 stands.

(Notice btw that, for the 19 student case, as far as the calculation of the final number is concerned, it doesn't matter which group is chosen first, that is, for example, 19C5*14C5*9C3*6C3 = 19C3*16C3*13C5*8C5 = ... .)

 

BobP

Sep 25, 2017
 #4
avatar+26375 
+2

Algebra

Compute the sum \(\mathbf{\frac{2}{1 \cdot 2 \cdot 3} + \frac{2}{2 \cdot 3 \cdot 4} + \frac{2}{3 \cdot 4 \cdot 5} + \cdots}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ ? } } \\\\ \begin{array}{|lcll|} \hline s_n = \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\ \hline \end{array} \\ \end{array}\\\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \frac{1}{n(n+d)} = \frac{1}{d}\left(\frac{1}{n}- \frac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

we rearrange:

\(\begin{array}{|rcll|} \hline \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{n+1} - \dfrac{2}{n}\times \dfrac{1}{n+2} \\\\ &=& 2\times \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- 2\times \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n} - \dfrac{2}{n+1} -\dfrac{1}{n} + \dfrac{1}{n+2} \\\\ \mathbf{\dfrac{2}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{n} - \dfrac{2}{n+1} + \dfrac{1}{n+2} } \\ \hline \end{array}\)

 

telescoping series

\(\begin{array}{|rcll|} \hline s_n &=& \mathbf{\dfrac{1}{1}} &\mathbf{-}& \mathbf{\dfrac{2}{2}} &\color{red}+& \color{red}\dfrac{1}{3} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{2}} &\color{red}-& \color{red}\dfrac{2}{3} &\color{blue}+& \color{blue}\dfrac{1}{4} \\\\ &\color{red}+& \color{red}\dfrac{1}{3} &\color{blue}-& \color{blue}\dfrac{2}{4} &\color{red}+& \color{red}\dfrac{1}{5} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{4} &\color{red}-& \color{red}\dfrac{2}{5} &\color{green}+& \color{green}\dfrac{1}{6} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{n-2} &\color{green}-& \color{green}\dfrac{2}{n-1} &\color{red}+& \color{red}\dfrac{1}{n} \\\\ &\color{green}+& \color{green}\dfrac{1}{n-1} &\color{red}-& \color{red}\dfrac{2}{n} &\mathbf{+}& \mathbf{\dfrac{1}{n+1}} \\\\ &\color{red}+& \color{red}\dfrac{1}{n} &\mathbf{-}& \mathbf{\dfrac{2}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{n+2}} \\ \hline \end{array}\)

 

The part of each term cancelling with part of the next two diagonal terms:

Example:

\(\begin{array}{|lcll|} \hline \frac{1}{3}-\frac{2}{3}+\frac{1}{3} = 0 \\ \frac{1}{4}-\frac{2}{4}+\frac{1}{4} = 0 \\ \frac{1}{5}-\frac{2}{5}+\frac{1}{5} = 0 \\ \ldots \\ \frac{1}{n}-\frac{2}{n} + \frac{1}{n} = 0 \\ \hline \end{array}\)

 

So \(s_n\) is, we have all black terms left :

\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{1}{1}-\dfrac{2}{2}+\dfrac{1}{2} + \dfrac{1}{n+1} - \dfrac{2}{n+1} + \dfrac{1}{n+2} \\\\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{1}{2} - \dfrac{1}{n+1} + \dfrac{1}{n+2}} \\ \hline \end{array} \)

 

 \(\lim \limits_{n\to \infty} { \dfrac{1}{n+1}} = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{1}{n+2} } = 0 \)

 

\( \begin{array}{|rcll|} \hline \lim \limits_{n\to \infty} s_n &=& \dfrac{1}{2} - 0 + 0 \\ &=& \dfrac{1}{2} \\ \hline \end{array} \)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ \dfrac{1}{2} } } \\ \end{array}\\\)

 

 

laugh

Sep 25, 2017
 #1
avatar+118612 
+3

Here is one, by GingerAle and Hectictar, that Hectictar just asked me to include.  Thanks Girls :)

 

This is the original thread but I will includ most of the salient coding underneath.

https://web2.0calc.com/questions/1-84-1-56-8

 

\(\boxed{3x\stackrel{?}{=}7}\)

 

\boxed{3x\stackrel{?}{=}7}

 

---------------------------------

 

\(\begin{array}{|rcll|} \hline \angle {ABC} &=& 27° \\ \measuredangle{ABC} &=& 27° \\ \stackrel {\; \frown} {ABC} &=& 27° \\ \stackrel { \hspace{.1em} \wedge} {AC} &=& 27° \\ \stackrel {\, \hspace{.1em} \frown} {AC} &=& 27° \\ \hline \end{array}\\\ \overset{\; \frown}{AC} = 27° \\\)

 

Coding

 

\begin{array}{|rcll|}

\hline

\angle {ABC} &=& 27° \\

\measuredangle{ABC} &=& 27° \\

\stackrel {\; \frown} {ABC} &=& 27° \\

\stackrel { \hspace{.1em} \wedge} {AC} &=& 27° \\

\stackrel {\, \hspace{.1em}  \frown} {AC} &=& 27° \\

\hline \end{array}\\\

\overset{\; \frown}{AC} = 27° \\

 

 

I only just realised that Ginger has not used the \boxed command.

I wonder how she got the vertical side lines on her box??   I'll have to work it out ://

Arr got it, it is a part of the array command. 

Thanks Ginger :)

-----------------------------------------------------------------------------------

 

Oh Hectictar also mentioned that there is a number of ways to get the degree sign.

These are Hectictars words:

"I have noticed that there are actually two signs that look like degree signs in the "special character" selection. One of them is a masculine ordinal indicator: º  and the other is the degree sign: °  . (If you hover over the symbol it tells the name of it.)

I just use the command   ^\circ     Like this     5^\circ  displays as  \(5^\circ\)

.
Sep 25, 2017
Sep 24, 2017

2 Online Users

avatar
avatar