4.05 kg + 567.95 g + 100.1 g
\(4.05 kg + 567.95 g + 100.1 g\)
\( =4.05 kg{\color{blue} \times \frac{1000g}{kg}}+ 567.95 g + 100.1 g\)
\( =4050 g+ 567.95 g + 100.1 g\)
\(=4718.05g\)
!
(2+3)^2-8+6
First, calculate the brace. Then potentiate before line calculation.
\((2+3)^2-8+6\)
\(=5^2-8+6\)
\(=25-8+6\)
= 23
\(19\times95=1805\)
\((19)\times (9)\times (5)=855\)
-sinx=12/13
\(-sin \ x=\frac{12}{13}\)
Enter DEG at the computer.
\(sin \ x=-\frac{12}{13}\)
\(x= arcsin -0.\overline{923076}\)
\(x=-1.1760\)
Enter RAD at the computer.
\(x=-67.380 \ GRD\)
What is the highest number that can be created with 1,9,9 and 5? And use and symbols but you have keep the numbers in that order!
\((19)^{9^5} \) \(=3.49874300244\times 10^{57}\)
\(19^{95}=3.03104295096\times 10^{121}\)
Not quite sure !
find the exact value of tan(19pi)
\(tan(19pi)=tan(19\pi-18\pi)=tan\pi =0\)
25%/2572800=75%/x
\(\frac{25\%}{2572800}=\frac{75\%}{x}\)
\(x\times25\%=2572800\times75\%\)
\(x=\frac{2572800\times75\%}{25\%}\)
\(x=7718400\)
Alpha 15 grad, cos 15 grad = ??
\(cos 15°=0,965925826289\)
graphing and solving for y with a radical x
y=sqrt(x)
\(f(x)=y=\sqrt{x}\)
\(y=\sqrt{x}=0\) \(x=0\)