geno3141

avatar
Usernamegeno3141
Score23254
Membership
Stats
Questions 1
Answers 7089

 #2
avatar+23254 
+12

Start by drawing this triangle on a sheet of graph paper.

 

Place the base on the x-axis, centered at the origin [point O].

Call the left-hand corner point A(-4,0) and the right-hand corner point B(4,0).

Place the vertex of the triangle [point C] on the positive y-axis.

 

The first problem is to find the coordinates of C.

The distance from A to O is 4; the distance from A to C is sqrt(80).

Use the Pythagorean Theorem to find the distance from ) to C; it iis 8; so the coordinates of C are (0,8).

 

Find the equation of line CB.

Its slope is (8 - 0) / (0 - 4) = -2.

The equation is:  y = -2x + 8.

 

Draw a rectangle inscribed in the triangle with its base on the x-axis.

Let the right-hand corner point of this base be (x,0) and the left-hand corner point of this base be (-x,0).

To find the height of the rectangle: the height will be the y-value -- and at point (x,0), the height is -2x + 8.

 

The area of the rectangle will be the length of its base (from point (-x,0) to (x,0) which is equal to 2x) times its height (which is -2x + 8).

Area = (2x)(-2x + 8)    --->   Area = -4x2 + 16x

 

I'm assuming that you are taking calculus -- find the first derivative:  Area' = -8x + 16

To find a maximum (or a minimum, but this time it's a maximum), set the first derivative equal to zero and solve:

--->     -8x + 16 = 0     --->     -8x = -16     --->     x = 2

 

So, the total length of the base is 4.

The height is -2x + 8 = -2(2) + 8 = -4 + 8 = 4

 

So, the area is:  4 x 4  =  16  square units.

Jul 26, 2016
 #3
avatar+23254 
+15
Jul 17, 2016
 #1
avatar+23254 
0

Slope-intercept form of a straight line:  y  =  mx + b

Point-slope form of a straight line:        y - y1  =  m(x - x1)

 

A)  Through  (4,3 ) and  m  =  2/5

      --->  Use the point-slope form with  m = 2/5,  x1 = 4, and  y = 3:     y - 3  =  (2/5)(x - 4)

              --->   Cross-multiply:  5(y - 3)  =  2(x - 4)   --->   5y - 15  =  2x - 8   --->   5y  =  2x + 7    --->   y  =  (2/5)x + (7/5)

 

B)  Through  (-4,2)  and  (2,-5)

     --->  First:  find the slope:  m  =  (-5 - 2) / (2 - -4)  =  -7/6

     --->   Use the point-slope form (using either point):  y - 2  =  (-7/6)(x - -4)

     --->     6(y - 2)  =  -7(x + 4)   --->   6y - 12  =  -7x - 28   --->   6y  =  -7x - 16   --->   y  =  (-7/6)x - 8/ 3

 

C)  m = 3/5  and  y-intercept -4:

     --->  Use the slope-intercept form:  y  =  (3/5)x - 4

 

D)  x-int = 7  and  y-int = -2:

     --->  x-int = 7   --->   (7,0)

             y-int = -2   --->   (0,-2)

     --->  First:  find the slope:  m  =  (-2 - 0) / (0 - 7)  =  -2/-7  =  2/7

     --->   Use the slope-intercept form:  y  =  (2/7)x - 2

 

E)  Passes through  (-2,2)  and is parallel to  4x - 3y -7  =  0:

     --->   All parallel lines have the same x-coefficient and the same y-coefficient; so, all lines parallel to 4x - 3y -7  =  0                 have the form:  4x - 3y + k  =  0  (for some value of k).

     --->   To find the value of  k  replace x with -2  and  y with 2:

              --->     4(-2) - 3(2) + k  =  0   --->   -8 - 6 + k  =  0   --->   -14 + k  =  0   --->   k = 14

              --->  Equation:  4x - 3y - 14  =  0

Jul 17, 2016