Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
 
+0  
 
+15
630
6
avatar

An equation

|1x2x+1|=2x

How many real roots does it have:

a)Exactly 3 real roots

b)Exactly 2 real roots

c)Exactly 1 real root

d)It doesn't have any real roots

 Jul 17, 2016

Best Answer 

 #3
avatar+23254 
+15

| 1/x - 2/(x+1) |  =  2/x

 

Because the left-hand side is contained within absolute value bars, its value must be positive (or zero).

Thus, the right-hand side must also be positive; for  2/x  to be positive,  x  must be positive.

 

Simplifying the left-hand side:  | 1/x - 2/(x + 1) |  =  | 1(x + 1)/[x(x + 1)] - 2x/[x(x + 1)] |  

                                                                          =  | (x + 1 - 2x) / [ x(x + 1) ] |

                                                                          =  | (1 - x) / [ x(x + 1) ] |

 

Therefore:  | (1 - x) / [ x(x + 1) ] |  =  2/x

 

Since it is an absolute value equation, there are two possibilities:

     either     (1 - x) / [ x(x + 1) ]  =  2/x     or      (1 - x) / [ x(x + 1) ]  =  -2/x

 

If       (1 - x) / [ x(x + 1) ]  =  2/x

--->   (1 - x) / [ x(x + 1) ]  =  2(x + 1) / [ x(x + 1) ]

--->   1 - x  =  2(x + 1)

--->   1 - x  =  2x + 2

--->   -1  =  3x

--->   x  =  -1/3          <--- But this is impossible, because  x  must be positive.

 

If      (1 - x) / [ x(x + 1) ]  =  -2/x

--->  (1 - x) / [ x(x + 1) ]  =  -2(x + 1) / [x(x + 1) ]

--->   1 - x  =  -2(x + 1)

--->   1 - x  =  -2x - 2

--->   3  =  -x

--->   x  =  -1/3          <--- But this is also impossible.

 

So, I think that the correct answer is  d) it doesn't have any real roots.

 Jul 17, 2016
 #1
avatar
+5

Solve for x:
1/x-2/(x+1) = 2/x

 

Multiply both sides by x:
1-(2 x)/(x+1) = 2

 

Bring 1-(2 x)/(x+1) together using the common denominator x+1:
(1-x)/(x+1) = 2

 

Multiply both sides by x+1:
1-x = 2 (x+1)

 

Expand out terms of the right hand side:
1-x = 2 x+2

 

Subtract 2 x+1 from both sides:
-3 x = 1

 

Divide both sides by -3:
Answer: |  x = -1/3        Looks like the answer is "C"

 Jul 17, 2016
 #2
avatar+15069 
+5

Hallo Guest!

 

An equation

How many real roots does it have:

 

|1x2x+1|=2x

 

a)Exactly 3 real roots

b)Exactly 2 real roots

c)Exactly 1 real root

d)It doesn't have any real roots

 

|1x2x+1|=2x

 

                                  [ * ( x² + x)

 

 

x + 1 - 2x = 2x + 2

- 3x = 1

 

x = - 1 / 3

 

Sample:

1 / (- 1 / 3) - 2 / (1 - 1 / 3) = 2 / (- 1 / 3)

       - 3      -              3       =   - 6

                                     - 6 = - 6

c)Exactly 1 real root

 

Greeting asinus :- )

laugh   !

 Jul 17, 2016
 #3
avatar+23254 
+15
Best Answer

| 1/x - 2/(x+1) |  =  2/x

 

Because the left-hand side is contained within absolute value bars, its value must be positive (or zero).

Thus, the right-hand side must also be positive; for  2/x  to be positive,  x  must be positive.

 

Simplifying the left-hand side:  | 1/x - 2/(x + 1) |  =  | 1(x + 1)/[x(x + 1)] - 2x/[x(x + 1)] |  

                                                                          =  | (x + 1 - 2x) / [ x(x + 1) ] |

                                                                          =  | (1 - x) / [ x(x + 1) ] |

 

Therefore:  | (1 - x) / [ x(x + 1) ] |  =  2/x

 

Since it is an absolute value equation, there are two possibilities:

     either     (1 - x) / [ x(x + 1) ]  =  2/x     or      (1 - x) / [ x(x + 1) ]  =  -2/x

 

If       (1 - x) / [ x(x + 1) ]  =  2/x

--->   (1 - x) / [ x(x + 1) ]  =  2(x + 1) / [ x(x + 1) ]

--->   1 - x  =  2(x + 1)

--->   1 - x  =  2x + 2

--->   -1  =  3x

--->   x  =  -1/3          <--- But this is impossible, because  x  must be positive.

 

If      (1 - x) / [ x(x + 1) ]  =  -2/x

--->  (1 - x) / [ x(x + 1) ]  =  -2(x + 1) / [x(x + 1) ]

--->   1 - x  =  -2(x + 1)

--->   1 - x  =  -2x - 2

--->   3  =  -x

--->   x  =  -1/3          <--- But this is also impossible.

 

So, I think that the correct answer is  d) it doesn't have any real roots.

geno3141 Jul 17, 2016
 #4
avatar+33657 
+5

We can see by plotting a graph that geno is correct:

 Jul 18, 2016
 #5
avatar+15069 
+5

Hallo geno and Alan!

 

An equation

How many real roots does it have:

 

 

a)Exactly 3 real roots

b)Exactly 2 real roots

c)Exactly 1 real root

d)It doesn't have any real roots

 

Of course you are right.
The condition "abs" matters:
Without "absolutely" is x = - 1/3,
with the "absolutely" no root.


It applies
d) It does not have any real roots

 

Greeting asinus :- )

 

laugh   !

 Jul 18, 2016
 #6
avatar+26396 
+5

An equation

How many real roots does it have:

a)Exactly 3 real roots

b)Exactly 2 real roots

c)Exactly 1 real root

d)It doesn't have any real roots

 

 

 

 

d) It doesn't have any real roots

 

laugh

 Jul 20, 2016
edited by heureka  Jul 20, 2016
edited by heureka  Jul 20, 2016

0 Online Users