Nauseated

avatar
UsernameNauseated
Score1038
Membership
Stats
Questions 3
Answers 237

 #4
avatar+1038 
+5

 The correct and highly accurate solutions presented below for your entertainment and edification  . . . .

 

$$\;.\hspace{20pt} \text {a)\; } 4^3 = 64 \; \hspace{15pt}\leftarrow \hspace{15pt} \small \textcolor[rgb]{0,0,0}{\text {No restrictions:}}\\$$

$$\displaystyle \text {b)\; 3} \hspace{15pt}\leftarrow \hspace{15pt} \small \text {Enter "IntegerPartitions [3]" \; into \ Wolfram \ alpha.} \

\hspace{15pt} \text { This will show the values and the symbolic partitions.}\\
\;. \hspace{35pt}\tiny \text { (You may need to use your brain a little more than normal). }\\$$

$$\;. \hspace{15pt} \displaystyle \text {c)\; 20 } \hspace{15pt}\leftarrow \hspace{15pt} \left( {\begin{array}{*{20}c} Removed \ errant \ Binomial \\ \ from \ this \ post \\ \end{array}} \right) = \underbrace{\dfrac{(N+k-1)!}{k!}}_{Dist. \ box \ Indist. \ candy }\; \hspace{15pt}| \hspace{15pt} \Text {N=4 \; k=3} \\\\$$

$$\;. \hspace{15pt} \displaystyle \text {d)\; 7 } \hspace{15pt}\leftarrow \hspace{15pt} \binom {3}{3}\; +\; \binom {3}{2}\; +\; \binom {3}{1}\; =\; 7 \;
\text {(Indist. box; Dist. candy)}\\$$

$$\;. \hspace{15pt}\displaystyle \text {e)\; 40 } \hspace{15pt}\leftarrow \hspace{15pt} \left( \dfrac{4!}{2!}\right)* \left(2 \right) \;+\; \left( \dfrac{4!}{2!}\right) \;+\; \left(4\right)\\$$

 

$$\text {Reasoning:}\\
\displaystyle \text {All candy in 1 of 4 boxes (4)}\\
\displaystyle \text {2 combinations (XX Y\; \&\; XY X) \;distributed to boxes in (2)(4*3) = (2)(4!/2!) \;=\;(12*2) ways;}\\
\text {and 1 candy to each box distributed to boxes in (1)(4*3*2)/2 = 4!/2! = (12) ways.} \\
\text {Total 4+24+12 = 40 ways.}$$

 

All this plus or minus CDD . . .

 

$$\tiny \textcolor[rgb]{1,,0}{\text {(Corrected error in binomial formula for soultion c)}}\\$$

.
Mar 24, 2015
 #10
avatar+1038 
+10

This doesn’t give any restrictions other than both the b***s and boxes are distinguishable.

Here are solutions for certain restrictions or freedoms.

 

If any box(N) can contain zero to (k) b***s then the solution is

 

$$\displaystyle N^k \ = \ {3^6} \ = \ 729$$

 -------------------------------------------------------------------------------

If a box MUST contain (1) but can contain up to (k-N+1) b***s then the solution is

 

$$\displaystyle \sum \limits_{i=0}^{\textcolor[rgb]{1,0,0}{N-1}} *(-1)^i*\binom{N}{i}* (N-i)^k \\$$

 

This is a scripted link to Wolfram alpha

https://www.wolframalpha.com/input/?i=sum+%28+binom%283%2Ci%29*%28-1%29^i*%283-i%29^6%29+from+i%3D0+to+2

This is the script:

sum (binom(3,i)*(-1)^i*(3-i)^6) from i=0 to 2

(Note the value of 540 is consistent with CPhill’s solutions)

 -------------------------------------------------------------------------------

If the boxes are distinguishable and the b***s are indistinguishable then

 

$$\displaystyle \left( {\begin{array}{*{20}c} 56 \end{array}} \right) = \dfrac{{(N+k-1)!}}{{k!}}\; \hspace{15pt}| \hspace{15pt} \Text {N=6 \; k=3} \\$$

-------------------------------------------------------------------------------

When both the b***s and boxes are indistinguishable then k parts of N partitions may be needed. http://mathworld.wolfram.com/PartitionFunctionP.html This might seems easier, but this is intermediate level combinatorics. The partition function is not any more difficult to understand than combinations, but the assembly of what to add, subtract and when, increases the complexity from b***h to royal b***h.

Good thing Melody appointed me Royal SOB.

 

$$\tiny \textcolor[rgb]{1,,0}{\text {(Edited: Formating )}}\\$$

.
Mar 21, 2015
 #15
avatar+1038 
+5
Mar 14, 2015