Splatmaster

avatar
UsernameSplatmaster
Score9
Membership
Stats
Questions 1
Answers 2

 #1
avatar+9 
0

THE ANSWER IS 

 (x(3)+250x(2)+100x)/((1)/(2)x(2)+25x+9) 

Final result :

2x • (x2 + 250x + 100) —————————————————————— x2 + 50x + 18

Step by step solution :

Step  1  :

1 Simplify — 2

Equation at the end of step  1  :

x)1 ————•x2)+25x)+9) (((2

Step  2  :

Equation at the end of step  2  :

)x2 ———+25x)+9) ((2

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Adding a whole to a fraction 

Rewrite the whole as a fraction using  2  as the denominator :

25x 25x • 2 25x = ——— = ——————— 1 2

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole 

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x2 + 25x • 2 x2 + 50x ———————————— = ———————— 2 2

Equation at the end of step  3  :

(x2+50x) ————————+9) (2

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a whole to a fraction 

Rewrite the whole as a fraction using  2  as the denominator :

9 9 • 2 9 = — = ————— 1 2

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   x2 + 50x  =   x • (x + 50) 

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions 

x • (x+50) + 9 • 2 x2 + 50x + 18 —————————————————— = ————————————— 2 2

Equation at the end of step  5  :

(x2+50x+18) ——————————— 2

Step  6  :

Equation at the end of step  6  :

(x2 + 50x + 18) ——————————————— 2

Step  7  :

x2+50x+18 Divide x3+250x2+100x by ————————— 2

Step  8  :

Pulling out like terms :

 8.1     Pull out like factors :

   x3 + 250x2 + 100x  =   x • (x2 + 250x + 100) 

Trying to factor by splitting the middle term

 8.2     Factoring  x2 + 250x + 100 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +250x  its coefficient is  250 .
The last term, "the constant", is  +100 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 100 = 100 

Step-2 : Find two factors of  100  whose sum equals the coefficient of the middle term, which is   250 .

     -100   +   -1   =   -101

     -50   +   -2   =   -52

     -25   +   -4   =   -29

     -20   +   -5   =   -25

     -10   +   -10   =   -20

     -5   +   -20   =   -25


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !! 
Conclusion : Trinomial can not be factored

Trying to factor by splitting the middle term

 8.3     Factoring  x2+50x+18 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +50x  its coefficient is  50 .
The last term, "the constant", is  +18 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 18 = 18 

Step-2 : Find two factors of  18  whose sum equals the coefficient of the middle term, which is   50 .

     -18   +   -1   =   -19

     -9   +   -2   =   -11

     -6   +   -3   =   -9

     -3   +   -6   =   -9

     -2   +   -9   =   -11

     -1   +   -18   =   -19

     1   +   18   =   19

     2   +   9   =   11

     3   +   6   =   9

     6   +   3   =   9

     9   +   2   =   11

     18   +   1   =   19


Observation : No two such factors can be found !! 
Conclusion : Trinomial can not be factored

Final result :

2x • (x2 + 250x + 100) —————————————————————— x2 + 50x + 18

Nov 28, 2017