im not sure if you mean $${\frac{{\mathtt{27}}}{{\mathtt{3}}}}{\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)$$ or$${\frac{{\mathtt{27}}}{\left({\mathtt{3}}{\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)\right)}}$$but im assuming its the first one. ill do both anyway

for the first one:

$${\frac{{\mathtt{27}}}{{\mathtt{3}}}}{\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)$$

order of operations, 4 + 3/4 = 19/4

27/3 - 19/4 = 108/12 - 57/12

$${\mathtt{108}}{\mathtt{\,-\,}}{\mathtt{57}} = {\mathtt{51}}$$

$${\frac{{\mathtt{51}}}{{\mathtt{12}}}} = {\frac{{\mathtt{17}}}{{\mathtt{4}}}} = {\mathtt{4.25}}$$

for the other one

$${\frac{{\mathtt{27}}}{\left({\mathtt{3}}{\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{3}}}{{\mathtt{4}}}}\right)\right)}}$$

first figure out the denominator deal of course

4+(3/4) =19/4

$${\frac{{\mathtt{19}}}{{\mathtt{4}}}} = {\mathtt{4.75}}$$

3-4.75=-1.75

$${\frac{{\mathtt{27}}}{-{\mathtt{1.75}}}} = {\mathtt{\,-\,}}{\frac{{\mathtt{108}}}{{\mathtt{7}}}} = -{\mathtt{15.428\: \!571\: \!428\: \!571\: \!428\: \!6}}$$

.