Questions   
Sort: 
 #1
avatar
0
Jan 2, 2017
 #10
 #7
avatar
+10

Solve the linear equation x ( dy(x))/( dx) - (x + 1) y(x) = -e^x (x^2 + 1):
Rewrite the equation:
( dy(x))/( dx) + ((-x - 1) y(x))/x = -(e^x (x^2 + 1))/x
Let μ(x) = e^( integral(-x - 1)/x dx) = e^(-x)/x


Multiply both sides by μ(x):
(e^(-x) ( dy(x))/( dx))/x + ((e^(-x) (-x - 1)) y(x))/x^2 = -(x^2 + 1)/x^2
Substitute (e^(-x) (-x - 1))/x^2 = ( d)/( dx)(e^(-x)/x):
(e^(-x) ( dy(x))/( dx))/x + ( d)/( dx)(e^(-x)/x) y(x) = -(x^2 + 1)/x^2
Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:


( d)/( dx)((e^(-x) y(x))/x) = -(x^2 + 1)/x^2
Integrate both sides with respect to x:
 integral( d)/( dx)((e^(-x) y(x))/x) dx = integral-(x^2 + 1)/x^2 dx


Evaluate the integrals:
(e^(-x) y(x))/x = -x + 1/x + c_1, where c_1 is an arbitrary constant.
Divide both sides by μ(x) = e^(-x)/x:
Answer: |y(x) = e^x x (-x + 1/x + C1)

 

Solve the linear equation (y(x))/sqrt(x^2 + 1) + ( dy(x))/( dx) = 1:
Let μ(x) = e^( integral1/sqrt(x^2 + 1) dx) = e^(sinh^(-1)(x)).


Multiply both sides by μ(x):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + (e^(sinh^(-1)(x)) y(x))/sqrt(x^2 + 1) = e^(sinh^(-1)(x))


Substitute e^(sinh^(-1)(x))/sqrt(x^2 + 1) = ( d)/( dx)(e^(sinh^(-1)(x))):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + ( d)/( dx)(e^(sinh^(-1)(x))) y(x) = e^(sinh^(-1)(x))


Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:
( d)/( dx)(e^(sinh^(-1)(x)) y(x)) = e^(sinh^(-1)(x))


Integrate both sides with respect to x:
 integral( d)/( dx)(e^(sinh^(-1)(x)) y(x)) dx = integral e^(sinh^(-1)(x)) dx


Evaluate the integrals:
e^(sinh^(-1)(x)) y(x) = 1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + c_1, where c_1 is an arbitrary constant.


Divide both sides by μ(x) = e^(sinh^(-1)(x)):
Answer: |y(x) = (1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + C1)/e^(sinh^(-1)(x))

Jan 2, 2017
 #3

1 Online Users

avatar