+1808
+1808
+289
+289 Oct 6, 2025
+5 Oct 1, 2025
+4 Sep 29, 2025
Sep 28, 2025
+4 Aug 25, 2025
+1285
+1285 Aug 24, 2025
Aug 23, 2025
+943
+943
+1285
+67
+1285 Aug 22, 2025
+1285
+1285 Aug 21, 2025
+970
+970 Aug 20, 2025
+490
+490 Aug 19, 2025
+85
+289
+289
+67
+490
+294 Aug 18, 2025
+289
+289 Aug 17, 2025
+289
+289 Aug 16, 2025
+842
+190
+483
+23 Aug 15, 2025
+417
+970
+943 Aug 14, 2025
+5 In the diagram below, is a square. Find x[asy]
unitsize(1.5 cm);
pair A, B, C, D, P;
A = (0,3);
B = (0,0);<#> C = (3,0);<#> D = (3,3);<#> P = (0.8,1.8);<#> draw(A--B--C--D--cycle);<#> draw(A--P);<#> draw(B--P);<#> read more .. Aug 13, 2025
+289 Aug 11, 2025
+289
+289
+289
+289 Aug 10, 2025
+289 Aug 9, 2025
+289 Aug 8, 2025
+289
+289
+289 Aug 7, 2025
+289
+289 Aug 5, 2025
+289
+289 Aug 3, 2025
+289
+289
+289 Aug 2, 2025
+67
+289
+289
+289
+289
+62 Aug 1, 2025
+289
+289
+289
+289
+67 Jul 31, 2025
+289
+289
+289
+289
+289
+289 Jul 30, 2025
+62
+289
+289 Jul 29, 2025
+289
+289
+289
+289
+67
+289
+289
+62 Jul 28, 2025
+289
+289
+289
+289
+289
+289
+289
+62
+62 Jul 27, 2025
+289
+289
+289
+289
+289
+289 Jul 26, 2025
+62
+289 Jul 25, 2025
+62
+289
+289
+289
+67
+289 Jul 24, 2025
+289
+289
+62
+289
+289 A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3) is a permutation of (1,2,3,4,5).
Find the number of permutations (x_1, x_2, \dots, x_8)
read more ..
+289 Find the number of sequences (a_1, a_2, a_3, \dots, a_8) such that:
* a_i \in \{1, 2, 3, 4, 5, 6, 7, 8\} for all 1 \le i \le 8.
* Every number1, 2, 3, 4, 5, 6, 7, 8 appears at least once in the sequence.
+289 A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits (spades, hearts, diamonds, and clubs), such that there is exactly one card for any given rank and suit.
You are dealt a hand of
read more ..
+289
+289
+289
+289
+289
+289
+289 Jul 23, 2025
+62 Jul 22, 2025
+842
+1733
+1004
+1524
+190
+62 Jul 21, 2025
+190
+1285 A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3)$ is a permutation of (1,2,3,4,5).
Let \pi = (x_1,x_2,x_3,\dots,x_n) be a permutation
read more ..
+1285
+62 Jul 20, 2025
+483 Jul 12, 2025
+483 Jul 11, 2025
+483 Jul 8, 2025
Jul 7, 2025
+1285 Jul 6, 2025
+12 Jul 3, 2025
+1285
+1285
+1285
+10 Jul 2, 2025
+215 Jun 24, 2025
+5 Jun 21, 2025
+24 Jun 20, 2025
+943
+943 Jun 19, 2025
+24
+1285
+15 Jun 17, 2025
Jun 12, 2025
+120
+4
+3 Jun 11, 2025
+17
+1285 Consider the set
S = {1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 23, 24, ..., 12345678},
which consists of all positive integers whose digits strictly increase from left to right, and the digits are from 1 to 8. This set is
read more ..
+1285 Jun 10, 2025
+5 Jun 9, 2025
Jun 8, 2025
Jun 6, 2025
Jun 5, 2025
Jun 2, 2025
May 29, 2025
+842 May 28, 2025
+707
+190 May 27, 2025
+483
+343
+810
+1285 May 26, 2025
+8 May 25, 2025
+1285 May 24, 2025
May 23, 2025
+9
+190 May 22, 2025
+9
+190 May 19, 2025
+5
+483 May 15, 2025
+53
+4 May 13, 2025
+53
+53
+53
+53
+53
+53 May 12, 2025
May 10, 2025
+456
+483
+483
+53
+53
+53
+53
+15 May 9, 2025
+1808
+1808
+1808
+1808
+608 A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits (spades, hearts, diamonds, and clubs), such that there is exactly one card for any given rank and suit.
You are dealt a hand of
read more ..
+608 Find the number of sequences (a_1, a_2, a_3, \dots, a_8) such that:
* a_i \in \{1, 2, 3, 4, 5, 6, 7, 8\} for all 1 \le i \le 8.
* Every number1, 2, 3, 4, 5, 6, 7, 8 appears at least once in the sequence.
+608 A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3) is a permutation of (1,2,3,4,5).
Find the number of permutations (x_1, x_2, \dots, x_8)
read more ..
+53
+53
+53
+4
+53
+15 May 8, 2025
+1271
+842
+842 Apr 27, 2025
Apr 26, 2025
+56
+56 Apr 24, 2025
+4 Apr 23, 2025
+1285
+1285
+56
+56
+56
+16 Apr 22, 2025
+4
+56 Apr 21, 2025
+56 Apr 20, 2025
+977
+977
+977 Consider the set
S = {1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 23, 24, ..., 12345678},
which consists of all positive integers whose digits strictly increase from left to right, and the digits are from 1 to 8. This set is
read more .. Apr 19, 2025
+483
+483
+608
+608
+608
+1808 Apr 18, 2025
+56
+56
+56 Apr 17, 2025
+357
+357
+56
+56
+56
+56
+810
+970
+970
+22
+483
+483
+483
+483
+400 Apr 16, 2025
+400
+400 Apr 15, 2025
+400
+400 Apr 14, 2025
+400
+400 Apr 13, 2025
+400 A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3) is a permutation of (1,2,3,4,5).
Find the number of permutations (x_1, x_2, \dots, x_8)
read more ..
+400 Find the number of sequences (a_1, a_2, a_3, \dots, a_8) such that:
* a_i \in \{1, 2, 3, 4, 5, 6, 7, 8\} for all 1 \le i \le 8.
* Every number1, 2, 3, 4, 5, 6, 7, 8 appears at least once in the sequence.
+400 A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits (spades, hearts, diamonds, and clubs), such that there is exactly one card for any given rank and suit.
You are dealt a hand of
read more ..
+400
+400 Apr 12, 2025
+400
+1524
+1524
+1524
+1524
+810
+810
+810
+810
+810
+1808
+1808 A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3)$ is a permutation of (1,2,3,4,5).
Let \pi = (x_1,x_2,x_3,\dots,x_n) be a permutation
read more ..
+1808 Apr 11, 2025
+1808 Apr 10, 2025
+608
+608
+608 Apr 9, 2025
+190
+190 Apr 8, 2025
+190
+190
+943
+943
+943
+943 Apr 7, 2025
+970
+970
+448
+400 Apr 5, 2025
+190
+190
+190
+970
+970
+970 Apr 4, 2025
+970
+970
+943
+294
+400
+400
+400
+71
+1524
+1524
+483
+483
+483 Apr 3, 2025
+810 Apr 2, 2025
+810 Apr 1, 2025
+1733
+190 Mar 31, 2025
+6 Mar 30, 2025
+44
+44
+44
+44
+490
+490
+490
+4 Find the area of triangle ABC
[asy]
unitsize (2 cm);
pair A, B, C, D, E, F, H;
A = (0,2);
B = (-1,0);<#> C = (1,0);<#> D = (0,0);<#> E = (B + reflect(A,C)*(B))/2;<#> F = (C + reflect(A,B)*(C))/2;<#> read more ..
+44
+44
+44
+44
+44
+44
+44 Mar 29, 2025
+22
+190
+190 Mar 27, 2025
+1808
+190
+190
+190
+190 Mar 26, 2025
+1808
+1808 Mar 25, 2025
+1808
+1808
+1808
+1808
+1808
+190
+190
+190
+190
+8 Mar 24, 2025
+343
+343
+343
+343 Mar 23, 2025
+194 Mar 22, 2025
+810
+810 Mar 21, 2025
+190
+190
+190 Mar 20, 2025
+120
+1285
+1285
+1285
+1285
+1285 Mar 19, 2025
+1285
+1285
+1285
+1285
+120
+120 Mar 18, 2025
+1285
+1285
+1285 Mar 17, 2025
+120
+120
+141
+1285
+1285 Mar 16, 2025
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285
+1285 Mar 15, 2025
+1285
+1285
+1285
+810
+810
+810 Mar 14, 2025
+120
+120
+120
+120
+120 Mar 13, 2025
+120
+120
+120
+120 Mar 12, 2025
+120
+120
+120
+120 Mar 11, 2025
+1285
+1285
+1285
+1285
+120
+120
+120
+120
+120
+810
+810 Mar 10, 2025
+1285
+1285
+1285
+810 Mar 9, 2025
+7 Mar 8, 2025
+810
+810
+810
+190
+190
+190
+190 Mar 7, 2025
+190
+190
+190
+190
+190
+190
+21
+810
+810
+810
+810
+1285
+1285
+1285 Mar 6, 2025
+1285
+1285
+1285
+190
+190
+190
+190 Mar 5, 2025
+120
+120
+120 Mar 4, 2025
+120
+120
+810
+810
+810
+810
+810
+810
+810
+21
+21
+21
+21 Mar 3, 2025
+11
+190
+190
+190
+190
+1808
+1808
+1808
+1808
+977
+977
+977
+194 Mar 2, 2025
+37
+810
+810
+810
+810
+36
+36
+972
+972
+1524
+1556
+810
+810
+343
+34
+1808
+1808
+1808
+417
+417
+417
+417
+490
+490
+490
+490
+970
+970
+970
+456
+456 Mar 1, 2025
+456
+456
+900
+900
+900
+900
+483
+483
+483
+483
+357
+357
+357 Feb 28, 2025
Feb 27, 2025
+456
+456
+357
+357 Feb 26, 2025
+357
+357
+456
+456 Feb 25, 2025
+456
+456
+456
+456
+357
+357
+357
+357
+357
+357
+357
+38 Problem:
Find AC.
[asy] size(300); pair A,B,C,O; A=origin; B=6*sqrt(3)*dir(150); C=(5,0);draw(A--B--C--cycle); dot("$A$",A,SW); dot("$B$",B,NW); dot("$C$",C,SE); label("$150^\circ$",A,dir(75)); label("$9$",A--B,SW); label("$7\sqrt{3}$",C--B,NE);read more .. Feb 24, 2025
+17
+456
+456
+456
+456
+357
+357
+357
+357
+113