Questions   
Sort: 
Apr 25, 2024
Apr 24, 2024
 #1
avatar+1791 
0

We can divide this problem into two cases:

 

Case 1: Each row has exactly one child from each family.

 

Choose one child from each family for the first row: there are 3 choices

.

Arrange the remaining two children in the first row (siblings can't be together): there are 2!=2 ways.

 

Arrange the second row similarly: 3⋅2=6​ ways total.

 

Case 2: One row has two children from the same family.

 

There are two subcases depending on the arrangement of siblings in the rows:

 

Subcase 2a: The first child in each row is from the same family.

 

Choose one pair of siblings: 3 choices

.

Arrange the siblings within the pair: 2 ways.

 

Arrange the remaining 4 children (2 from another pair and 2 from the third pair) in the second row: 4! ways.

 

Overcount: we've counted the arrangement as if sibling order matters within a pair (which it doesn't) twice (once for each sibling in the first row). So, we divide by 2!⋅2!.

 

Total: 2!⋅2!3⋅2⋅4!​=36 ways.

 

Subcase 2b: The first child in the first row is NOT a sibling of the first child in the second row.

 

Choose one pair to have their children occupy the third seats in each row: 3 choices.

 

Arrange the remaining 4 children in the first row: 4! ways.

 

Overcount: similar to subcase 2a, we divide by 2!⋅2! to account for sibling order not mattering.

 

Total: 2!⋅2!3⋅4!​=36 ways.

 

Since Cases 1 and 2 are mutually exclusive, to find the total number of arrangements, we simply add the number of arrangements from each case:

6 + 36 + 36 = 78​.

 

This gives us a final answer of 78.

Apr 24, 2024
Apr 23, 2024

1 Online Users

avatar