Let f(y) = y^4 -3y^3 +y - 3 and g(y) = y^4 - 5y -10. Find f(y) + 2g(y) . Write your answer as a polynomial with terms of decreasing degree.
Hello Guest!
\(f(y) + 2g(y)=y^4 -3y^3 +y - 3+2y^4 - 10y -20\\ \color{blue}f(y) + 2g(y)=3y^4-3y^3-9y-23 \)
Hello guest!
For you a little help in LaTeX:
https://www.matheboard.de/formeleditor.php#
asinus wishes you lots of fun with it.
greeting
The positive difference between two consecutive even perfect squares is 228. Compute the larger of the two squares.
\({\color{blue}22^2}-16^2=228\)
The larger of the two squares is \(22^2=484.\)
!
For what value of the constant a does the system of equations below have infinitely many solutions?
a = - 54
What is 40% of 120% of x?
40% of 120% of x are
\(40\%\times 120\%\times x=\frac{40}{100}\times \frac{120}{100} \times x =\color{blue}\frac{´48}{100}\times x \)
are 48% of x.
was ist 3 quadrat hoch 7 mal 6?
\((3^2)^7=9^7=4782969\)
13 goes 9 times into 125 with a remainder of 8.
\(125=13\times 9+8\)
1 1/4 + (-3 1/6)=
Hello mathbms!
\(1\dfrac{1}{4}+(-3\dfrac{1}{6})=\dfrac{5}{4}-\dfrac{19}{6}=\dfrac{3\cdot 5-2\cdot 19}{12}=\color{blue}-\dfrac{23}{12}\)
Probolobo hat recht. Für das "Unsinn" in meiner Antwort bitte ich um Entschuldigung.
4438 / x = 0 ist Unsinn.
Der Ausdruck 4438 / x ist immer \(\neq 0,\) egal, welcher Wert für x eingesetzt ist.