Loading [MathJax]/jax/output/SVG/jax.js
 

bunnybeer

avatar
Usernamebunnybeer
Score28
Membership
Stats
Questions 5
Answers 6

 #5
avatar+28 
0
Jun 30, 2020
 #3
avatar+28 
0

Todeterminethesurfaceareaofsolid$CXYZ,$wedeterminetheareaofeachofthefourtriangularfacesandsumthem.Areasof$CZX$and$CZY:$Eachofthesetrianglesisrightangledandhaslegsoflengths6and8;therefore,theareaofeachis$12(6)(8)=24$.Areaof$CXY:$Thistriangleisequilateralwithsidelength$6.$Wedrawthealtitudefrom$C$to$M$on$XY.$Since$CXY$isequilateral,then$M$isthemidpointof$XY.$Thus,$CMX$and$CMY$are$30$$60$$90$triangles.Usingtheratiosfromthisspecialtriangle,$$CM=32(CX)=32(6)=33.$$Since$XY=6,$theareaof$CXY$is$$12(6)(33)=93.$$Areaof$XYZ:$Wehave$XY=6$and$XZ=YZ=10$anddropanaltitudefrom$Z$to$XY.$Since$XYZ$isisosceles,thisaltitudemeets$XY$atitsmidpoint,$M,$andwehave$$XM=MY=12(XY)=3.$$BythePythagoreanTheorem,ZM=ZX2XM2=10232=91.Since$XY=6,$theareaof$XYZ$is$$12(6)(91)=391.$$Finally,thetotalsurfaceareaofsolid$CXYZ$is$$24+24+93+391=48+93+391.$$

.
Jun 30, 2020