sin2(x) + cos2(x) = 1
sec2(x) = 1 + tan2(x)
csc2(x) = 1 + cot2(x)
[sin2(x) + cos2(x)] + tan2(x) + cot2(x) + [sec2(x)] + [csc2(x)] = 7
---> 1 + tan2(x) + cot2(x) + [1 + tan2(x)] + [1 + cot2(x)] = 7
---> 3 + 2tan2(x) + 2cot2(x) = 7
---> 2tan2(x) + 2cot2(x) = 4
---> tan2(x) + cot2(x) = 2
---> tan2(x) + 1 / tan2(x) = 2
---> tan4(x) + 1 = 2tan2(x)
---> tan4(x) - 2tan2(x) + 1 = 0
---> (tan2(x) - 1)(tan2(x) - 1) = 0
---> tan2(x) = 1
---> tan(x) = 1 or tan(x) = -1
---> x = π/4 or 5π/4 or x = 3π/4 or 7π/4