+0  
 
0
442
2
avatar

Find all values of x in the interval [0,2pi) that satisfy the equation
sin^2(x)+cos^2(x)+tan^2(x)+cot^2(x)+sec^2(x)+csc^2(x)=7

Guest Feb 26, 2015

Best Answer 

 #2
avatar+89791 
+5

sin^2(x)+cos^2(x)+tan^2(x)+cot^2(x)+sec^2(x)+csc^2(x)=7

Note that  ...sin^2x + cos^2x = 1    ...so we have

tan^2x + cot^2x + sec^2x + csc^2x = 6

And

1 + tan^2x = sec^2x   ....so we have

2tan^2x + cot^2x + csc^2x = 5

And 1 + cot^2x = csc^x     so we have

2tan^2x + 2cot^x  = 4    divide through by 2   

tan^2x + cot^2x = 2

So

sin^2x/ cos^2x + cos^2x/sin^2x = 2

[sin^4x + cos^4]  = 2sin^2xcos^2x    rearrange

sin^4x - 2sin^2xcos^x + cos^4x = 0   factor

(sin^2x -cos^2x)(sin^2x - cos^2x)  =0   setting one of the factors to 0, we have

sin^2x - cos^2x = 0   factor again

(sinx + cosx)(sinx-cosx)  = 0

For the first factor, we have sinx = -cosx.... and this occurs at 3pi/4 and at 7pi/4

For the second factor, we have  sinx = cos x  and this occurs at pi/4 and 5pi/4

So....our solutions are   pi/4, 3pi/4, 5pi/4 and 7pi/4

 

 

CPhill  Feb 26, 2015
 #1
avatar+17745 
+5

sin2(x) + cos2(x)  =  1

sec2(x)  =  1 + tan2(x)

csc2(x)  =  1 + cot2(x)

[sin2(x) + cos2(x)] + tan2(x) + cot2(x) + [sec2(x)] + [csc2(x)]  =  7

--->   1 + tan2(x) + cot2(x) + [1 + tan2(x)] + [1 + cot2(x)]  =  7

--->   3 + 2tan2(x) + 2cot2(x)  =  7

--->   2tan2(x) + 2cot2(x)  =  4

--->   tan2(x) + cot2(x)  =  2

--->   tan2(x) + 1 / tan2(x)  =  2

--->   tan4(x) + 1  =  2tan2(x)

--->   tan4(x) - 2tan2(x) + 1  =  0

--->   (tan2(x) - 1)(tan2(x) - 1)  =  0

--->   tan2(x)  =  1

--->   tan(x)  =  1    or    tan(x)  =  -1

--->   x  =  π/4  or  5π/4     or     x  =  3π/4  or  7π/4

geno3141  Feb 26, 2015
 #2
avatar+89791 
+5
Best Answer

sin^2(x)+cos^2(x)+tan^2(x)+cot^2(x)+sec^2(x)+csc^2(x)=7

Note that  ...sin^2x + cos^2x = 1    ...so we have

tan^2x + cot^2x + sec^2x + csc^2x = 6

And

1 + tan^2x = sec^2x   ....so we have

2tan^2x + cot^2x + csc^2x = 5

And 1 + cot^2x = csc^x     so we have

2tan^2x + 2cot^x  = 4    divide through by 2   

tan^2x + cot^2x = 2

So

sin^2x/ cos^2x + cos^2x/sin^2x = 2

[sin^4x + cos^4]  = 2sin^2xcos^2x    rearrange

sin^4x - 2sin^2xcos^x + cos^4x = 0   factor

(sin^2x -cos^2x)(sin^2x - cos^2x)  =0   setting one of the factors to 0, we have

sin^2x - cos^2x = 0   factor again

(sinx + cosx)(sinx-cosx)  = 0

For the first factor, we have sinx = -cosx.... and this occurs at 3pi/4 and at 7pi/4

For the second factor, we have  sinx = cos x  and this occurs at pi/4 and 5pi/4

So....our solutions are   pi/4, 3pi/4, 5pi/4 and 7pi/4

 

 

CPhill  Feb 26, 2015

44 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.