hectictar

avatar
Usernamehectictar
Score9491
Membership
Stats
Questions 10
Answers 3005

 #1
avatar+9491 
+2

Q1.)

(i)

Rearrange     v = u + at     so that     u     is made the subject of the equation.

This means:  Get     u     all by itself on one side of the equation.

 

v  =  u + at                    Subtract   at   from both sides of the equation.

v - at  =  u + at - at       Any number plus fifty bazillion minus fifty bazilion equals the original number.

v - at  =  u                     or we can write this as...

u  =  v - at

 

(ii)

I think the instructions are...

If    u  =  v - at     , what does  u  equal when    v = 4 ,    a = 2 ,    and    t = 1   ?

 

u  =  v - at                     Replace  " v "  with  4 , replace  " a "  with  2 , and replace  " t "  with  1

u  =  4 - (2)(1)

u  =  4 - 2

u  =  2

 

 

 

 

Q2.)

(i)

We want to get   u   all by itself on one side of the equation.

v2  =  u2 + 2as                          Subtract   2as   from both sides of the equation.

v2 - 2as  =  u2 + 2as - 2as

v2 - 2as  =  u2                          Take the square root of both sides of the equation.  *

\(\sqrt{v^2-2as}=\sqrt{u^2}\)               The square root of any number squared equals the number.

\( \sqrt{v^2-2as}\)  =  u

u  =  \( \sqrt{v^2-2as}\)

 

(ii)

u  =  \( \sqrt{v^2-2as}\)               Replace  " v "  with  10 , replace  " a "  with  4 , and replace  " s "  with  10

u  =  \( \sqrt{10^2-2(4)(10)}\)

u  =  \( \sqrt{100-80}\)

u  =  \( \sqrt{20} \)                          And the square root of 20 can also be written as...

u  =  \(2\sqrt5\)

 

* I only took the positive root because I think that is all you need to do, but I might be wrong. If you want to be a cool kid, you can say   u  =  \( \pm\sqrt{v^2-2as}\)          and          u  =  \(\pm2\sqrt5\)     winklaugh

 

 

I hope this made some sense! If you have a question don't hesitate to ask!  smiley

Jun 4, 2017