+0  
 
+3
124
2
avatar+7056 

This question tripped me up at first but then I figured out the correct answer. I thought it was a neat question if anyone wants to try it just for fun.  laugh

 

Given  tan θ = 20/21  and  180° < θ < 270° ,  find the exact value of  cos(θ/2) .

hectictar  Mar 21, 2018
Sort: 

2+0 Answers

 #1
avatar+86613 
+4

θ  ≈ 223.6  ....  so  .... θ/2    will lie in the 2nd quadrant

 

r  =  √[ 20^2 + 21^2 ]   =  √841  =  29

 

cos (θ)  =  -21/  29

 

cos (θ/2)  =   - √  [  (  1  + ( -21 / 29 ) ) / 2 ]

 

cos (θ/2)  =    -  √ [ (29 - 21) / (2*29) ]  = -  √ [ (8) / (2*29) ]   = - √ [ 4 /29) ] =

 

-   2 / √ 29

 

 

cool cool cool

CPhill  Mar 21, 2018
 #2
avatar+7056 
+3

Ah you got it!!

 

I got messed up because if you try to check it in WolframAlpha by entering

 

cos(atan(20/21)/2)

 

you get a different answer, but if you enter

 

cos((atan(20/21)+pi)/2)

 

it gives the right answer.  smiley

hectictar  Mar 21, 2018

19 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy