1.) See "Vieta"
2.) You find x1=1 do:
\begin{array}{ rlllr } ( x^3 & +4x^2 & +x & -6) & : (x-1) =\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6} \\ \textcolor[rgb]{1,0,0}{{\underline{-( x^3}} & \textcolor[rgb]{1,0,0}{\underline{-x^2)}}} & & & \\ 0 & +5x^2 & +x \\ & \textcolor[rgb]{0,0,1}{\underline{-(5x^2}} & \textcolor[rgb]{0,0,1}{\underline{-5x)}} \\ & 0 & +6x & -6 \\ && \textcolor[rgb]{0,1,0}{\underline{-(6x}} & \textcolor[rgb]{0,1,0}{\underline{-6)}} \\ && 0 & +0 \end{array}
\begin{array}{
rlllr
} (
x^3
&
+4x^2
&
+x
&
-6)
&
:
(x-1)
=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}
\\
\textcolor[rgb]{1,0,0}{{\underline{-(
x^3}}
&
\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}
&
&
&
\\
0
&
+5x^2
&
+x
\\
&
\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}
&
\textcolor[rgb]{0,0,1}{\underline{-5x)}}
\\
&
0
&
+6x
&
-6
\\
&&
\textcolor[rgb]{0,1,0}{\underline{-(6x}}
&
\textcolor[rgb]{0,1,0}{\underline{-6)}}
\\
&&
0
&
+0
\end{array}
so we have: x3+4x2+x−6=(x−1)(x2+5x+6)
x^3+4x^2+x-6=(x-1)(x^2+5x+6)
We solve:
x2+5x+6=0x2+5x+(52)2−(52)2+6=0(x+52)2=254−6(x+52)2=14|±√x+52=±√14x2,3=−52±12x2=−52+12=−42=−2_x3=−52−12=−62=−3_
\\x^2+5x+6=0\\
x^2+5x+(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2-(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2+6=0\\
\left( x+\frac{5}{2}\right)^2=\frac{25}{4}-6\\
\left( x+\frac{5}{2}\right)^2=\frac{1}{4}\qquad| \quad \pm\sqrt{}\\
x+\frac{5}{2}=\pm\sqrt{\frac{1}{4}}\\
x_{2,3}=-\frac{5}{2}\pm\frac{1}{2}\\
x_2=-\frac{5}{2}+\frac{1}{2}=-\frac{4}{2}=\underline{-2}\\
x_3=-\frac{5}{2}-\frac{1}{2}=-\frac{6}{2}=\underline{-3}\\
x1=1x2=−2x3=−3x3+4x2+x−6=(x−1)(x+2)(x+3)
\\x_1=1 \qquad x_2=-2 \qquad x_3=-3\\
\boxed{x^3+4x^2+x-6=(x-1)(x+2)(x+3)}