Processing math: 100%
 

heureka

avatar
Usernameheureka
Score26396
Membership
Stats
Questions 17
Answers 5678

 #1
avatar+26396 
+2

Find the value of
Sn=12+322+523+...+2n32n1+2n12n

 

Let x=12

 

Sn=x+3x2+5x3+7x4+...+(2n3)xn1+(2n1)xnxSn=1x2+3x3+5x4+...+(2n5)xn1+(2n3)xn+(2n1)xn+1xxSn=x+2x2+2x3+2x4+...+2xn1+2xn(2n1)xn+1Sn(1x)=x+2(x2+x3+x4+...+xn1+xn)(2n1)xn+1x2+x3+x4+...+xn1+xn=x2xn+11xSn(1x)=x+2x2xn+11x(2n1)xn+1|1x=112=12Sn12=x+4(x2xn+1)(2n1)xn+1|2Sn=2x+8(x2xn+1)2(2n1)xn+1Sn=2x+8x28xn+12(2n1)xn+1Sn=2x+8x22xn+1(4+(2n1))Sn=2x+8x22xn+1(2n+3)Sn=2x(1+4xxn(2n+3))|x=12Sn=1+22n+32nSn=32n+32n

 

laugh

May 19, 2022
 #3
avatar+26396 
+4

Let a, b, c be the roots of x3x+4=0.
Compute (a21)(b21)(c21).

 

By Vieta:

x3+0x20=(a+b+c)1x1=ab+ac+bc+44=abcabc=4ab+ac+bc=1a+b+c=0

 

a+b+c=0(a+b+c)2=02a2+b2+c2+2(ab+ac+bc)=0a2+b2+c2+2(1)=0a2+b2+c2=2ab+ac+bc=1(ab+ac+bc)2=(1)2a2b2+a2c2+b2c2+2(a2bc+ab2c+abc2)=1a2b2+a2c2+b2c2+2abc(a+b+c)=1a2b2+a2c2+b2c2+2abc(0)=1a2b2+a2c2+b2c2=1

 

(a21)(b21)(c21)=a2b2c2(a2b2+a2c2+b2c2)+a2+b2+c21=(4)2(1)+21=162+2=16

 

(a21)(b21)(c21)=16

 

laugh

Aug 19, 2021