Find the value of Sn=12+322+523+...+2n−32n−1+2n−12n
Let x=12
Sn=x+3x2+5x3+7x4+...+(2n−3)xn−1+(2n−1)xnxSn=1x2+3x3+5x4+...+(2n−5)xn−1+(2n−3)xn+(2n−1)xn+1x−xSn=x+2x2+2x3+2x4+...+2xn−1+2xn−(2n−1)xn+1Sn(1−x)=x+2∗(x2+x3+x4+...+xn−1+xn)−(2n−1)xn+1x2+x3+x4+...+xn−1+xn=x2−xn+11−xSn(1−x)=x+2∗x2−xn+11−x−(2n−1)xn+1|1−x=1−12=12Sn∗12=x+4(x2−xn+1)−(2n−1)xn+1|∗2Sn=2x+8(x2−xn+1)−2(2n−1)xn+1Sn=2x+8x2−8xn+1−2(2n−1)xn+1Sn=2x+8x2−2xn+1(4+(2n−1))Sn=2x+8x2−2xn+1(2n+3)Sn=2x(1+4x−xn(2n+3))|x=12Sn=1+2−2n+32nSn=3−2n+32n
A sequence is defined by
t345=2345=4∗86+1
Find the general term of the following sequences:
a)7,13,19,25,31,… an=6n+1
b) 4,–6,9,−272,… an=4∗(−32)n−1an=an−1∗(−32)
Compute the value of 1−2+3−4+⋯+2019−2020+2021.
s=1−2+3−4+⋯+2019−2020+2021s=2021−2020+2019−⋯−4+3−2+12s=2022−2022+2022−2022+⋯+2022−2022+20222s=0+0+⋯+0+20222s=2022s=1011
1−2+3−4+⋯+2019−2020+2021=1011
Find the value of series 1+4+2+8+3+12+4+16+⋯+24+96+25+100.
1+4=52+8=103+12=154+16=20…24+96=12025+100=125
1+4+2+8+3+12+4+16+⋯+24+96+25+100=5+10+15+20+⋯+120+125=5∗(1+2+3+4+⋯+24+25)1+2+3+4+⋯+24+25=1+252∗25=13∗25=325=5∗325=1625
Let a, b, c be the roots of x3−x+4=0. Compute (a2−1)(b2−1)(c2−1).
My answer see: https://web2.0calc.com/questions/pls-help_11001#r3
By Vieta:
x3+0∗x2⏟0=−(a+b+c)−1∗x⏟−1=ab+ac+bc+4⏟4=−abcabc=−4ab+ac+bc=−1a+b+c=0
a+b+c=0(a+b+c)2=02a2+b2+c2+2∗(ab+ac+bc)=0a2+b2+c2+2∗(−1)=0a2+b2+c2=2ab+ac+bc=−1(ab+ac+bc)2=(−1)2a2b2+a2c2+b2c2+2∗(a2bc+ab2c+abc2)=1a2b2+a2c2+b2c2+2∗abc∗(a+b+c)=1a2b2+a2c2+b2c2+2∗abc∗(0)=1a2b2+a2c2+b2c2=1
(a2−1)(b2−1)(c2−1)=a2b2c2−(a2b2+a2c2+b2c2)+a2+b2+c2−1=(−4)2−(1)+2−1=16−2+2=16
(a2−1)(b2−1)(c2−1)=16
Let a, b, and c, be nonzero real numbers such that a+b+c=0. Compute the value of a(1b+1c)+b(1a+1c)+c(1a+1b).
a+b+c=0a+b=−c(1)a+c=−b(2)b+c=−a(3)
a(1b+1c)+b(1a+1c)+c(1a+1b)=ab+ac+ba+bc+ca+cb=ba+ca+ab+cb+ac+bc=b+ca+a+cb+a+bc=−aa+−bb+−cc=−1−1−1=−3
a(1b+1c)+b(1a+1c)+c(1a+1b)=−3
What is the value of (1+i)5−(1−i)5?
(1+i)5−(1−i)5=((1+i)2)2(1+i)−((1−i)2)2(i−1)=(1+2i+i2)2(1+i)−(1−2i+i2)2(1−i)=(1+2i−1)2(1+i)−(1−2i−1)2(1−i)=(2i)2(1+i)−(−2i)2(1−i)=4i2(1+i)−4i2(1−i)|i2=−1=−4(1+i)+4(1−i)=−4−4i+4−4i(1+i)5−(1−i)5=−8i
Hello jleung,
see: https://en.wikipedia.org/wiki/Law_of_cosines