well for one you've got 25 in the matrix where it should be -25.
\(\begin{pmatrix} 1&-1&-2&|&-6\\ 3&2&0&|&-25\\ -4&1&-1&|&12 \end{pmatrix}\\ \begin{pmatrix} 1&-1&-2&|&-6\\ 0&5&6&|&-7\\ -4&1&-1&|&12 \end{pmatrix}\\ \begin{pmatrix} 1&-1&-2&|&-6\\ 0&5&6&|&-7\\ 0&-3&-9&|&-12 \end{pmatrix}\\\)
Now exchange rows 2 and 3 and normalize row 2
\(\begin{pmatrix} 1 & -1 & -2 & -6 \\ 0 & 1 & 3 & 4 \\ 0 & 5 & 6 & -7 \end{pmatrix}\\ \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 3 & 4 \\ 0 & 5 & 6 & -7 \end{pmatrix}\\ \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & -9 & -27 \end{pmatrix}\\ \)
Normalize row 3 and continue
\(\begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ \end{pmatrix}\\ \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ \end{pmatrix}\\ \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3 \\ \end{pmatrix}\\ \)
\(\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-5\\-5\\3\end{pmatrix}\)
.