TheXSquaredFactor

avatar
UsernameTheXSquaredFactor
Score2446
Membership
Stats
Questions 3
Answers 956

 #2
avatar+2446 
+1

Ok, I will assume for this problem that the 5 is labeled in inches, even though it does not say in the diagram. Yet again, I'll attempt to create a makeshift diagram like I did for you before.

 

      A                      5in                            B

      ------------------------------------------------

    /  |                                                     |  \

   /   |                                                     |    \

  /    | (2*sqrt(3))in                                 |      \

 /     |                                                     |        \

/      |                                                     |          \

--------------------------------------------------------------

D    E                                                   F           C

 

Let's remember what an altitude is; an altitude is the height that runs perpendicularly from a base to a vertex of the figure. Therefore, \(m\angle AED =90^{\circ}\). We already know that \(m\angle D=60^{\circ}\) by the given info. Of course, by the triangle sum theorem, \(m\angle DAE=(180-(90+60))^{\circ}=30^{\circ}\).

 

What does this mean? We have identified a 30-60-90 triangle in the diagram, and that is a special one! Let me explain with a diagram:
 

Source: http://study.com/cimages/multimages/16/30-60-90-example-diagram.png

 

This diagram shows the relationship between the sides and the angle measures.

 

1) The angle across 30 is x

2) The angle across 60 is \(x\sqrt{3}\)

3) The angle across the right angle is 2x.

 

This means that the ratio of the sides of a 30-60-90 triangle is \(1:\sqrt{3}:2\). Let's use this information to solve for some missing sides.

 

\(DE\sqrt{3}=AE=2\sqrt{3}\) This is the ratios of the side lengths determined above.
\(DE\sqrt{3}=2\sqrt{3}\) Divide by \(\sqrt{3}\) on both sides.
\(DE=2\)  
   

 

We have determined the length of DE, 2. Now, let's determine the length of the hypotenuse of \(\triangle ADE\) by using the ratio of the side lengths.

 

\(2DE=AD\) Substitute the value that we calculated for DE, 2.
\(AD=2*2=4\)  
   

 

Note that the same relationship occurs for the other triangle, \(\triangle BFC\), so \(FC=2\) and \(CB=4\). There is only one length we haven't determined the length of. It is \(EF\).

 

The length of this is right in front of us!  \(AB=EF=5\). Now, add all of these together!

 

\(P=(5+4+2+5+2+4)in\) Add these lengths together to get the final perimeter of the trapezoid, in inches. 
\(P=22in\)  
   

 

Bam! Done!

Jul 30, 2017
 #1
avatar+2446 
0

If you are going to list decimals, I would highly advise separating them with commas, as opposed with a numbered list. The decimals are confusing to read. If you want to use a numbered list still, I would do what I did below.

 

This is how I would revise your question:
 

Write each decimal as a fraction in simplest form.

 

1) 0.222

2) 0.1515

3) .0242424

4) 0.5555

5) -0.124124124

 

This is what I perceive the intended decimals to be, but I am not entirely sure, so correct me if I am wrong. 

 

I will start with the first decimal, 0.222.

 

\(0.222\) First, identify what place the decimal extends until (in this case, it extends to the thousandths place) and set it equal to a fraction over 1000.
\(0.222=\frac{222}{1000}\) Now, identify the GCF of the fraction. It is harder with larger numbers, but both numbers are even, so we can, at least, divide by 2.
\(\frac{222}{1000} \div \frac{2}{2}=\frac{111}{500}\) 111 and 500 do not share any common factors, except for 1, so this fraction is in simplest form.
   

 

I will do the next decimal, 0.1515

 

\(0.1515\) Do the same process as above; the decimal extends until the ten thousandths place. Set it to a fraction over that amount, ten thousand.
\(0.1515=\frac{1515}{10000}\) Yet again, it can be hard to determine the GCF, but both numbers end in a 5 or 0, so both are divisible by 5. 
\(\frac{1515}{10000}\div \frac{5}{5}=\frac{303}{2000}\) Yet again, there are no common factors greater than 1, so this fraction is irreducible.
   

 

I will do the next decimal, as well.

 

\(0.0242424\) This extends to the ten millionth place, so put the number over a fraction over ten million.
\(0.0242424=\frac{242424}{10000000}\) The numerator and denominator's final two digits are divisible by 4, so we can divide them by, at least, 4.
\(\frac{242424}{10000000}\div\frac{4}{4}=\frac{60606}{2500000}\) We aren't done yet. The numerator and denominator are both even, so it is divisible by 2.
\(\frac{60606}{2500000}\div\frac{2}{2}=\frac{30303}{125000}\) The numerator and denominator are co-prime, so this fraction is in simplest form.
   

 

Here goes the next one:

 

\(0.5555\) The decimal extends to the ten thousandths place, so make a fraction over ten thousand.
\(0.5555=\frac{5555}{10000}\) Both the numerator and denominator are divisible by 5 because both of them end in a 5 or a 0.
\(\frac{5555}{10000}\div \frac{5}{5}=\frac{1111}{2000}\) 1111 and 2000 have no common factors, so the fraction is simplified completely. 
   

 

And, of course, here is the next one, -0.124124124.

 

\(-0.124124124\) This decimal extends to the billionth place, so set it over a billion. Just put the negative sign in front of the fraction.
\(-0.124124124=-\frac{124124124}{1000000000}\) Both the numerator and denominator's final 2 digits are divisible by 4, so the fraction can be simplified. 
\(-\frac{124124124}{1000000000}\div\frac{4}{4}=\frac{31031031}{250000000}\) There are no more common factors. 
   

 

You are done now!

Jul 30, 2017
 #1
avatar+2446 
+3

Ok, after some problem solving I have finally figured out the answer! The answer was right in front of me, too!

 

I will attempt to make a diagram, but I cannot guarantee that it will be clear.

           

 

   C        A                                                                      D

    ----------------------------------------------------------------------

   |                                                                                  | 

H |                                                                                  |

   |                                                                                  |
   |                                                                                  |

   |                                                                                  |

   |                                                                                  |

   |                                                                                  |
   |                                                                                  |

   |                                                                                  |

   |                                                                                  | G

   |                                                                                  |
   ----------------------------------------------------------------------

  F                                                                          B     E

 

Ok, this is a diagram, and I have labeled the corners with letters so that it is clearer for you to understand!

 

If AB=12, that is the diagonal of the inner rectangle. Notice that AG=BH and BG=AH. We know that this by the properties of a rectangle; opposite sides of a rectangle are congruent. If all the triangles are right and isosceles, then we know that \(\triangle AGD \cong \triangle BHF\hspace{1mm}\text{and}\hspace{1mm}\triangle ACH \cong \triangle BEG\) because of angle-side-angle congruence theorem.

 

Let's remind ourselves, too, that these are, by the given information, right isosceles. This means that \(AD=DG=HF=FB\hspace{1mm}\text{and}\hspace{1mm}AC=CH=BE=EG\).

 

Let's label all the sides congruent to AD x and all sides congruent to AC y.

 

Let's find the length of the triangles' hypotenuses. Of course, we already know that \(AG=BH\hspace{1mm}\text{and}\hspace{1mm} BG=AH\), so we only need to calculate half of the diagonals. These are easier than they first appear, actually. A right isosceles triangle is 45-45-90 triangle, so the hypotenuses is the length of the leg times the square root of 2. Using this logic, \(AG=BH=x\sqrt{2}\hspace{1mm}\text{and}\hspace{1mm} BG=AH=y\sqrt{2}\).

 

Now that we have determined the lengths of the hypotenuses of the triangle. We can utilize the Pythagorean theorem, \(a^2+b^2=c^2\)

.

 

\((x\sqrt{2})^2+(y\sqrt{2})^2=12^2\) "Distribute" the square to all parts of the terms.
\(x^2*\sqrt{2}^2+y^2*\sqrt{2}^2=12^2\) Simplify as much as possible.
\(x^2*2+y^2*2=144\)  
\(2x^2+2y^2=144\) Divide by the GCF of all the terms, 2. You will see the significance of this shortly. 
\(x^2+y^2=72\)  
   

 

We are amazing close to the answer. To know the answer for sure, we must recognize something, first...

 

Well, let's find the area of all the triangles.

 

  \(\triangle ADG\) \(\triangle GEB\) \(\triangle BFH\) \(\triangle HCA\)
  \(A=\frac{1}{2}*x*x\) \(A=\frac{1}{2}*y*y\) \(A=\frac{1}{2}*x*x\) \(A=\frac{1}{2}*y*y\)
  \(A=\frac{1}{2}x^2\) \(A=\frac{1}{2}y^2\) \(A=\frac{1}{2}x^2\) \(A=\frac{1}{2}y^2\)
         

 

 

Add these areas together and see what you get.

 

\(\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}x^2+\frac{1}{2}y^2\) Add the combined areas of the triangles. Combine like terms.
\(x^2+y^2\) We have determined that the combined areas of the triangles are x^2+y^2
   

 

Do you see the significance of this? I do. We had determined in the previous calculation that \(x^2+y^2=72units^2\). Oh look! That's our answer! The combined area of all the triangles is \(72units^2\)

 

I sincerely hoped this helped you out.

Jul 29, 2017
 #1
avatar+2446 
+2

To convert from millimeters to inches in 2 dimensions, you must convert both the width and length before multiplying. I happen to only know this conversion from memorization:

 

\(1in=0.0254m\)

 

Of course, we want to go from millimeters to inches, so I must change the meters to millimeters. That is relatively simple:
 

\(\frac{1000mm}{1m}=\frac{xmm}{0.0254m}\) Using this proportion, we can figure out how many millimeters are in 0.0254 meters. 
\(x=0.0254*1000=25.4mm\)  
   

 

Ok, so now we know information that is a tad more useful than before.

 

\(1in=25.4mm\)

 

Using this knowledge, we can now convert both dimensions: 25mm and 40mm.

 

\(\frac{1in}{25.4mm}=\frac{xin}{25mm}\) Cross multiply to solve this proportion for x.
\(25=25.4x\) Divide by 25.4 on both sides.
\(x=\frac{25}{25.4}*\frac{10}{10}\) I, personally, do not like seeing decimals in fractions, so I am manipulating the fraction such that one exist.
\(x=\frac{250}{254}=\frac{125}{127}in\) For now, I will leave the fraction in this form/
   

 

Now I will convert 40mm into inches:

 

\(\frac{1in}{25.4mm}=\frac{yin}{40mm}\) Cross multiply to solve this proportion for y. I changed the variable so that it would not be confusing.
\(40=25.4y\) Divide by 25.4 on both sides.
\(y=\frac{40}{25.4}*\frac{10}{10}\) Yet again, I am getting decimals out of the fraction.
\(y=\frac{400}{254}=\frac{200}{127}in\)  
   

 

Ok, now multiply both of these fractions together.

 

\(\frac{125}{127}*\frac{200}{127}=\frac{25000}{16129}in^2\)

 

Unfortunately, this fraction is irreducible

 

\(\frac{25000}{16129}in^2\approx1.5500in^2\)

.
Jul 28, 2017